期刊文献+

基于改进典型相关分析的混沌时间序列预测 被引量:6

Chaotic time series prediction based on modified canonical correlation analysis
在线阅读 下载PDF
导出
摘要 典型相关分析是目前常用的研究两个变量集间相关性的统计方法.针对线性典型相关分析法不能揭示变量间非线性关系,因而不适用于混沌系统等问题,将核典型相关分析与径向基函数神经网络相结合,提出了一种改进的核典型相关分析方法以解决映射空间样本未知及逆矩阵求解困难等问题.首先利用两个径向基函数神经网络,通过训练使两个网络输出之间的相关系数达到最大,可同时得到两组典型相关变量.然后建立预测模型,对Lorenz混沌方程及大连月气温与降雨二变量混沌时间序列进行仿真,并与传统的线性回归预测方法进行比较,多组仿真结果证明了所述方法的有效性. Canonical correlation analysis (CCA) is correlativity between two sets of variables. Linear relationship useful meth between variables, so it is not suitable for a common statistical method to study the CCA cannot reveal the underlying nonlinear the chaotic systems. Kernel CCA (KCCA) is a od to improve such a linear method. A new nonlinear CCA method based on KCCA and radial basis function (RBF) neural network is proposed to solve the problem of the complexity of computation and overcome the difficulty variables, two RBF networks are train of computing the inverse matrix. To obtain the canonical ed to maximize their correlation coefficient, and then a prediction model is constructed. Simulations are conducted on Lorenz system, the monthly tempe metho rature and rainfall of Dalian. Comparison results with the existing linear regression (LR) d show that the proposed method is effective.
作者 韩敏 魏茹
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2008年第2期292-297,共6页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(60374064)
关键词 混沌时间序列预测 典型相关分析 核方法 径向基函数神经网络 chaotic time series prediction canonical correlation analysis kernel method RBF neural network
  • 相关文献

参考文献10

  • 1HOTELLING H. Relations between two sets of variates[J]. Biometrika, 1936, 28:321-377
  • 2孙平,徐宗本,申建中.基于核化原理的非线性典型相关判别分析[J].计算机学报,2004,27(6):789-795. 被引量:11
  • 3ZHENG Wen-ming, ZHOU Xiao-yan, ZHOU Cai-rong, et al. Facial expression recognition using kernel canonical correlation analysis (KCCA)[J]. IEEE Transactions on Neural Networks, 2006, 17 (1) : 233-238
  • 4赖艺芬,梁飞豹.基于典型相关的线性回归模型[J].福州大学学报(自然科学版),2004,32(4):438-441. 被引量:6
  • 5AKAHO Shotaro. A kernel method for canonical correlation analysis[C] // Proceedings of the International Meeting on Psychometric Society (IMPS2001). Osaka: [s n], 2001:101-105
  • 6LAI P L. FYFE C. Kernel and nonlinear canonical correlation analysis[J]. International Journal of Neural Systems, 2000, 10(5):365-377
  • 7张铃.基于核函数的SVM机与三层前向神经网络的关系[J].计算机学报,2002,25(7):696-700. 被引量:54
  • 8LAI P L, FYFE C. A neural implementation of canonical correlation analysis[J]. Neural Networks, 1999, 12:1391-1397
  • 9CHEN J L, ISLAM S, BISWAS P. Nonlinear dynamics of hourly ozone concentrations: nonparametric short term predlction[J]. Atmospheric Environment, 1998, 32(11) : {839-1848
  • 10LIU D L, SCOTT B J. Estimation of solar radiation in Australia from rainfall and temperature observations[J]. Agricultural and Forest Meteorology, 2001, 106(1) :41-59

二级参考文献14

  • 1Sun Wen-Shuang, Chen Lan-Xiang, Multivariate Statistical Analysis. Beijing: Higher Education Press, 1994(in Chinese)(孙文爽, 陈兰详. 多元统计分析. 北京: 高等教育出版社, 1994)
  • 2Bartlett M.S.. Further aspects of the theory of multiple regression. Proceedings of the Cambridge Philosophical Society, 1938, 34: 33~40
  • 3Vapnik V.N.. The Nature of Statistical Learning Theory. NY: Springer-Verlag, 1995(in Chinese)(张学工译. 统计学习理论的本质. 北京:清华大学出版社, 1999)
  • 4Scholkopf B., Smola A., Müller K.R.. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10: 1299~1319
  • 5Mika S., Rtsch G. et al. Fisher discriminant analysis with kernels. In: Neural Networks for Signal Processing IX, New York: IEEE Press, 1999, 41~48
  • 6Akaho S.. A kernel method for canonical correlation analysis. In: Proceedings of the International Meeting on Psychometric Society (IMPS2001), Osaka, Japan, 2001,101~105
  • 7Bian Zhao-Qi, Zhang Xue-Gong et al.. Pattern Recognition (2nd Edition). Beijing: Tsinghua University Press, 1999(in Chinese)(边肇祺, 张学工等. 模式识别(第2版). 北京: 清华大学出版社, 1999)
  • 8Cristianini N., Shawe-Taylor J.. An Introduction to Support Vector Machines. Cambridge, England: Cambridge University Press, 2000
  • 9Mika S., Rtsch G., Müller K.R.. A mathematical programming approach to the Kernel Fisher algorithm. In: Leen T.K., Dietterich T.G., Tresp V. eds, Advances in Neural Information Processing Systems 13, Cambridge, MA: MIT Press, 2001, 591~597
  • 10Engel Y., Mannor S., Meir R.. Sparse online greedy support vector regression. In: Proceedings of the 13th European Conference on Machine Learning, Helsinki, Finland, 2002, 84~96

共引文献68

同被引文献50

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部