摘要
典型相关分析是目前常用的研究两个变量集间相关性的统计方法.针对线性典型相关分析法不能揭示变量间非线性关系,因而不适用于混沌系统等问题,将核典型相关分析与径向基函数神经网络相结合,提出了一种改进的核典型相关分析方法以解决映射空间样本未知及逆矩阵求解困难等问题.首先利用两个径向基函数神经网络,通过训练使两个网络输出之间的相关系数达到最大,可同时得到两组典型相关变量.然后建立预测模型,对Lorenz混沌方程及大连月气温与降雨二变量混沌时间序列进行仿真,并与传统的线性回归预测方法进行比较,多组仿真结果证明了所述方法的有效性.
Canonical correlation analysis (CCA) is correlativity between two sets of variables. Linear relationship useful meth between variables, so it is not suitable for a common statistical method to study the CCA cannot reveal the underlying nonlinear the chaotic systems. Kernel CCA (KCCA) is a od to improve such a linear method. A new nonlinear CCA method based on KCCA and radial basis function (RBF) neural network is proposed to solve the problem of the complexity of computation and overcome the difficulty variables, two RBF networks are train of computing the inverse matrix. To obtain the canonical ed to maximize their correlation coefficient, and then a prediction model is constructed. Simulations are conducted on Lorenz system, the monthly tempe metho rature and rainfall of Dalian. Comparison results with the existing linear regression (LR) d show that the proposed method is effective.
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
2008年第2期292-297,共6页
Journal of Dalian University of Technology
基金
国家自然科学基金资助项目(60374064)