期刊文献+

可见/近红外光谱的南丰蜜桔可溶性固形物含量定量分析 被引量:50

ANALYSIS OF SOLUBLE SOLID CONTENT IN NANFENG MANDARIN FRUIT WITH VISIBLE NEAR INFRARED SPECTROSCOPY
在线阅读 下载PDF
导出
摘要 基于可见/近红外漫反射光谱定量分析技术对南丰蜜桔的可溶性固形物含量进行实验研究,采用偏最小二乘法对南丰蜜桔完整果和果肉的可见/近红外光谱进行了分析,并且比较和讨论了不同光谱预处理的建模结果,实验结果表明:在波长范围350—1800nm,一阶微分光谱所建模型效果最佳.其中完整果所建校正模型的预测相关系数为0.825和预测均方根偏差为0.899;果肉所建校正模型的预测相关系数为0.893,预测均方根偏差为0.749。 Soluble solids content (SSC) of Nanfeng mandarin fruit was studied by quantitative analysis technique based on visible/near infrared diffuse reflectance spectroscopy (Vis/NIR). Partial least squares (PLS) regression was carried out to analyze the Vis/NIR of Nanfeng mandarin fruit and its flesh. Calibration results for SSC were compared and discussed by using different spectral pretreatment methods. The result shows that the best calibration models, in the wavelength range of 350 - 1800nm, can be obtained by the first derivative spectrum ( D1 log (l/R) ). The best prediction results for the mandarin fruit are 0. 825 and 0. 899 for correlation coefficient ( rp ) and root mean square errors of prediction (RMSEP) respective- ly. The best prediction results for its flesh are 0. 893 and 0. 749 for rp and RMSEP respectively.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2008年第2期119-122,共4页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金(60468002 30560064)资助项目
关键词 可见近红外光谱 偏最小二乘法 可溶性固形物含量 南丰蜜桔 Vis/NIR spectroscopy PLS soluble solids content nanfeng mandarin fruit
  • 相关文献

参考文献6

二级参考文献21

  • 1尹球,疏小舟,徐兆安,匡定波.湖泊水环境指标的超光谱响应特征分析[J].红外与毫米波学报,2004,23(6):427-430. 被引量:32
  • 2何勇,李晓丽.用近红外光谱鉴别杨梅品种的研究[J].红外与毫米波学报,2006,25(3):192-194. 被引量:65
  • 3任玉林,邴春亭,逯家辉,郭晔.近红外漫反射光谱的主成分分析[J].光谱学与光谱分析,1996,16(6):31-35. 被引量:16
  • 4ZHUEr-yi YANGPeng-yuan(朱尔一 杨NB67A原).Application and Technique of Chemertric(化学计量学技术及应用)[M].Beijing: Science Press(北京: 科学出版社),2001.186.
  • 5Lammertyn Jeroen, Peirs Ann, et al. Postharvest Biology and Technology, 2000, (18): 121.
  • 6Peiris K H S, Dull G G, et al. Hort. Science, 1999, 34(1): 114.
  • 7Esteban-Diez I, Gonzalez-Saiz J M, Pizarro C. An evaluation of orthogonal signal correction methods for the charactefisation of arabica and robusta coffee varieties by NIRS[J]. Analytica. Chimica. Acta, 2004,514(1):57-67.
  • 8Haluk Utku. Application of the feature selection method to discriminate digitized wheat varieties [J]. Journal of Food Engineering, 1999,46(3): 211-216.
  • 9HE Yong, LI Xiao-Li, SHAO Yong-Ni. Quantitative analysis of the varieties of apple using near infrared spectroscopy by principal component analysis and BP model [J]. Lecture Notes in Artificial Intelligence, 2005,3809: 1053-1056.
  • 10HE Yong, ZHANG Yun, XIANG Li-Guo. Study of application model on BP neural network optimized by fuzzy clustering [J]. Lecture Notes in Artificial Intelligence, 2005,3789: 712-720.

共引文献190

同被引文献562

引证文献50

二级引证文献602

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部