期刊文献+

一种从胸HRCT图像序列分割肺的自动化方法 被引量:7

Automated lung segmentation in serial thoracic high resolution CT images
在线阅读 下载PDF
导出
摘要 提出了一种从胸部高分辨率CT图像序列中由粗到细分割肺组织的自动化方法。首先基于结构连续性的分割策略,采用阈值法和数学形态学分割出粗略的肺实质,再用区域生长法去掉气管,最后通过滚球法弥合肺边缘的裂缝及缺口。对6个数据集(共1720层图像)的分割结果成功率均在90%以上,每层分割时间小于6s,相似度分析表明自动与手工分割结果吻合良好,并能较好地保留细节。 An automated lung segmentation method for the serial thoracic high resolution CT images was proposed. Based on the structure contiguity, firstly the method used the thresholding and morphology technique to segment lung parenchyma coarsely. Then it eliminated the trachea and main bronchia using region growing method. Lastly a rolling ball technique was used to remedy the crack and gap in the lung boundary. In experiments, six cases which were comprised of 1720 slices were put into segmentation. The satisfactory results are above 90% and the mean segmentation time of one slice is shorter than 6 seconds. Then a case with normal slices was used to analyze the similarity between the results from computerized segmentation and handwork, and a good superposition is achieved.
出处 《北京生物医学工程》 2008年第1期6-10,共5页 Beijing Biomedical Engineering
基金 安徽省教委重点科研项目(2006KJ097A)资助
关键词 图像分割 胸部HRCT图像 结构连续性 区域生长 滚球法 image segmentation thoracic HRCT structure contiguity region growing rolling technique
  • 相关文献

参考文献8

二级参考文献35

  • 1潘纪戌 陈起航 等.肺部高分辨率CT[M].北京:中国纺织出版社,1995.155-156.
  • 2吴敏金.图像形态学[M].上海:上海科学技术文献出版社,1990.23-57.
  • 3[1]Okumura T,Miwa T,Jun ichi Kako,et al.Automatic detecion of lung cancers in chest CT images by variable N-Quoit filter[A].1998. Fourteenth International Conference on Pattern Recognition[C].1998 (2): 1671-1673.
  • 4[2]Lee Y,Hara T,Fujita H,et al.Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique[J].IEEE Transations on Medical Imaging,2001,20(7):595-604.
  • 5[3]Penedo M G,Carreira M J,Mosquera A,et al.Computer-aided diagnosis:a neural-nNetwork-based approach to lung nodule detection[J].IEEE Transaction on Medical Imaging,1998,17(6):872-880.
  • 6[4]Kawata Y,Niki N,Ohmatsu H,et al. Computerized anylysis of 3-D pulmonary nodule images in surrounding and internal structure feature spaces[J]. IEEE Transactions on Medical Imaging, 2001,889-892.
  • 7[6]Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York:Plenum,1981.
  • 8[7]Sarkar N,Chaudhuri.An efficient approach to estimate fractal dimension of texture images[J].Pattern Recognition.1992,25(9):1035-1041.
  • 9[1]Thomson Prentice.Facts and figures 2003.World Health Organization[EB/OL].(2003).http://www.who.int.
  • 10[2]T.Okumura,TMiwa,Jun-ichi Kako,et al.Automatic Detecion of Lung Cancers in Chest CT Images by Variable N-Quoit Filter[C]//Fourteenth International Conference on Patern Recognition,Brisbane,Australia,1998.

共引文献40

同被引文献64

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部