期刊文献+

基于神经网络的机动目标跟踪模糊Kalman滤波算法 被引量:2

Fuzzy Kalman filter algorithm based on neural networks for mobile target tracking
在线阅读 下载PDF
导出
摘要 以实现坦克对机动目标的有效跟踪为背景,针对传统Kalman滤波算法存在的计算量较大、需要先验信息较多的缺点,提出了一种基于神经网络的机动目标跟踪模糊Kalman滤波算法。在"当前"统计模型的基础上,将未知的目标机动加速度作为附加的过程噪声,使用模糊系统估计全部过程噪声的时变方差,利用神经网络对模糊系统中的参数进行优化。仿真结果表明了所提方法的有效性。 To achieve this goal mobile tanks right to the effective tracking the background of the traditional Kalman filter algorithm computation larger, more information prior to the shortcomings, a neural network-based mobile target tracking fuzzy Kalman filtering algorithm is presented. The "current" statistical model based on the unknown target mobile acceleration of the process as the additional noise, the use of fuzzy the systems estimate the entire processof the time-varying noise variance, use of neural network system of fuzzy the parameters are optimized. The simulation results show that the method is effective.
出处 《信息技术》 2008年第4期56-59,共4页 Information Technology
关键词 机动目标 跟踪 模糊Kalman滤波 神经网络 tactical objectives tracking fuzzy Kalman filtering neural networks
  • 相关文献

参考文献8

二级参考文献22

  • 1谭永红.多层前向神经网络的RLS训练算法及其在辨识中的应用[J].控制理论与应用,1994,11(5):594-599. 被引量:28
  • 2潘泉.机动目标跟踪双滤波器模型及自适应算法[J].控制理论与应用,1995,12(4):482-486. 被引量:7
  • 3Yaakov. Bar-Shalom, Thomas E. Fortmann. Tracking and data association, Academic press, 1988, vol. 179.
  • 4Bar-Shalom, Birmiwal. k. Variable dimension filter for maneuvering target tracking. IEEE, 1982,18(5):611~619.
  • 5Bogler. P. L. Tracking a maneuvering target using input estimation. IEEE,1987,23(3) :298~310.
  • 6Blom H A P, Bar-Shalom. The interacting multiple model algorithm for systems with markovian switching coefficients. IEEE, 1988,33(8):780~783.
  • 7Ding Z, Leung H, Chan K, Zhiwen Z. Model-set adaptation using a fuzzy Kalman filter [J]. Mathematical and Computer Modeling, 2001, 34: 799-812.
  • 8Chan K, Lee V, Leung H. Radar tracking for air surveillance in a stressful environment using a fuzzy-gain filter [J]. IEEE Trans Aerosp Electron Syst, 1997, 5(1): 80-89.
  • 9Romanenko A, Castro J. The unscented filter as a alternative to the EKF for nonlinear state estimation: a simulation case study [J]. Computers and Chemical Engineering, 2004, 28: 347-355.
  • 10Julier S J, Uhlmann J K. Unscented Filtering and Nonlinear Estimation [J]. Proceedings of the IEEE, 2004, 92(3): 401-422.

共引文献95

同被引文献13

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部