期刊文献+

空间近距离接近与绕飞轨道设计 被引量:1

Near-approach and Fly-around Trajectory Design
在线阅读 下载PDF
导出
摘要 利用多项式建立了空间飞行器相对目标的变轨加速度模型,给出了C-W方程的解析解;由此将在给定时间、初始及终端条件下完成空间近距离接近与绕飞的轨道设计问题转化为求解六元非线性方程组。文中给出了接近与绕飞典型问题的算例,验证了求解思路的正确性。 The orbit-transfering acceleration model of the relative target of the spacecraft is established with the polynomial, and the analytical solution for Clohessy-Wiltshire function is given. Therefore, the problem of completing the near approach and fly-around trajectory design within given time, initial and final conditions is transferred to solving the nonlinear simultaneous equations with 6 variables. The typical problem example of near approach and fly-around is given, which verifies the solving thought.
出处 《导弹与航天运载技术》 北大核心 2008年第2期1-3,共3页 Missiles and Space Vehicles
关键词 空间飞行器 轨道设计 接近 绕飞 Spacecraft Trajectory design Approach Fly-around
  • 相关文献

参考文献4

二级参考文献13

  • 1朱仁璋,汤溢,尹艳.空间交会最终平移轨迹安全模式设计[J].宇航学报,2004,25(4):443-448. 被引量:33
  • 2Bryson A E, Ho Y-C. Applied Optimal Control [M]. New York: Hemisphere Publishing Corporation, 1975.
  • 3Hull D G. Conversion of Optimal Control Problems into Parameter Optimization Problems [J]. Journal of Guidance, Control and Dynamics,1997, 20(1): 57 - 60.
  • 4Zondervan K P, Wood L J, Caughey T K. Optimal Low-Thrust, Three-Bum Orbit Transfers With Large Plane Changes [J]. Journal of the Astronautical Sciences, 1984, 32(3): 407 - 427.
  • 5Enright P J, Conway B A. Optimal Finite-Thrust Spacecraft Trajectories Using Collocation and Nonlinear Programming [J]. Journal of Guidance, Control and Dynamics, 1991, 14(5): 981 - 985.
  • 6Herman A L, Conway B A. Direct Optimization Using Collocation Based on High-Order Gauss-Lobatto Quadrature Rules [J]. Journal of Guidance, Control and Dynamics, 1996, 19(3): 592 - 599.
  • 7Fiaccio A V, McCormick C P. Nonlinear Programming - Sequential Unconstrained Minimization Technique [M]. J Wiley, 1968.
  • 8Carrou P.Spaceflight Dynamics.France, Cepadues-Editions, 1995.
  • 9Sengenes P, Goester J, Legenne J.Optimal Strategies for Hermes Autonomous Guidance and Control During Orbital Flignt.Malaga, Spain, 1987.
  • 10Larry D Mullins.Initial Value and Two Point Boundary Value Solutions to the Clohessy-Wiltshire Equations.The Journal of the Astronautical Sciences, October-December 1992,40(4): 487~501.

共引文献59

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部