期刊文献+

Hall婚配定理的新证明方法 被引量:4

A New Proof for Hall's Marriage Theorem
在线阅读 下载PDF
导出
摘要 众所周知,Hall于1935年给出的婚配定理是图论中著名而经典的定理.首先运用偏序集的思想和理论将婚配定理中所需的图论概念定义成了偏序集的新概念,然后用偏序集的方法对Hall定理给予了证明,最后用这种新方法解决了1个实际问题. It is well known that Hall Marriage Theorem presented by Hall in 1935 is a famous and classical theory in graph theory. Inthis paper, firstly, all the graph theory concepts needed in Hall's Marriage Theorem are defined in poset theory, followed by the proof of Hall' s Marriage Theorem is presented by the method of poset. Finally, a practical problem is solved by the above new way.
作者 毛华 庞双杰
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2008年第2期127-129,共3页 Journal of Hebei University(Natural Science Edition)
基金 河北省教育厅自然科学基金资助项目(2006105)
关键词 二分图 偏序关系 邻集 匹配 bipartite graph parial order relation field matching
  • 相关文献

参考文献4

  • 1BONDY J A. Murty U. S.R. graph theory with applications[M]. New Your: LTD Macmillan Press, 1976.
  • 2王树禾.图论[M].北京:科学出版社,2005.
  • 3GPATZER GEORGE. General lattice theory[M]. Berlin: Birkhauser Verlag, 1998.
  • 4刘桂真,陈庆华.拟阵论[M].长沙:国防科技大学出版社,1993.

共引文献5

同被引文献35

  • 1钟声,云敏,焦安全.求解单圈多部图的匹配算法[J].广西师范大学学报(自然科学版),2007,25(2):202-205. 被引量:5
  • 2耿素云,屈婉玲,张立昂.离散数学[M].北京:清华大学出版社,2008.
  • 3Umeyama S. An eigendecomposition approach to weighted graph matching problem[ J ]. IEEE Trans Patt Anal Mach Intel, 1988,10(5) :695 -703.
  • 4Almohamad H A, Duffuaa S O. A linear programming approach for the weighted graph matching problem [ J ]. IEEE Trans Patt Anal Mach Intel,1993,15(5) :522 -525:.
  • 5Gold S, Rangarian A. A graduated assignment algorithm for graph matching[ J]. IEEE Trans Patt Anal Mach Intel, 1996,18 (4) : 337 - 388.
  • 6Zavlanos M M, Pappas G J. A dynamical systems approach to weighted graph matching[J]. Automatica,2008,44(11) :2817 -2824.
  • 7Yuan J J. Induced matching extendable graph [ J ]. J Graph Theo, 1998,28:203 - 313.
  • 8Rizzi R. A short proof of Ktnig' s Matching Theorem[J]. J Graph Theo,2000,33:138-139.
  • 9田晓明,朱绍文.关于元向二部图最大匹配集矩阵算法的研究[J].湛江师范学院学报:自然科学版,2000,21(2):69-73.
  • 10Lovasz L, Plummer M. Matching Theory[ M ]. New York : North - Holland, 1980.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部