期刊文献+

热处理对N36锆合金腐蚀与吸氢性能的影响 被引量:9

Effect of Heat Treatments on Corrosion and Hydrogen Uptake Behaviors in N36 Zirconium Alloy
在线阅读 下载PDF
导出
摘要 将N36锆合金样品分别进行1020℃/20minWQ+C.R.+580℃/50hAC、820℃/2hAC+580℃/50hAC、820℃/2hAC+C.R.+580℃/50hAC、700℃/4hAC+C.R.+580℃/50hAC4种不同的热处理.用透射电镜观察了它们的显微组织,用高压釜腐蚀试验研究了它们在400℃/10.3MPa过热水蒸气中的腐蚀与吸氢行为.结果表明:经1020℃/20minWQ+C.R.+580℃/50hAC处理后样品的耐腐蚀性能最好,其原因在于合金中第二相细小弥散分布在晶界及晶内;而经820℃/2hAC+580℃/50hAC处理后样品的耐腐蚀性能最差,第二相主要集中在晶界上,且比较粗大.经820℃/2hAC+C.R.+580℃/50hAC、700℃/4hAC+C.R.+580℃/50hAC处理的样品的腐蚀性能介于两者之间.热处理对N36锆合金腐蚀时的吸氢行为有一定的影响,但不如对Zr-4合金的影响大,这可能是因为N36锆合金中的第二相吸氢能力不如Zr-4合金中的Zr(Fe,Cr)2第二相强的缘故. N36 zirconium alloy specimens were treated in different ways at 1 020 ℃/20 min WQ + C.R. (cold rolling) + 580 ℃/50 h AC, 820 ℃/2 h AC +580 ℃/50 h AC, 820 ℃/2 h AC + C.R. +580 ℃/50 h AC, and 700 ℃/4 h AC + C. R. + 580 ℃/50 h AC, respectively. Their microstruetures were examined by transmission electron microscopy (TEM). The corrosion and hydrogen uptake behaviors of these specimens were investigated after autoclave tests in superheated steam at 400 ℃/10.3 MPa. Results show that the corrosion resistance of the specimen treated at 1 020 ℃/20 min WQ + C. R. (cold rolling) +580 ℃/50 h AC is the best among them. The reason is that such treatment makes the second phase particles fine and dispersed in α-Zr matrix. The corrosion resistance of the specimen treated at 820 ℃/2 h AC + 580 ℃/50 h AC was the worst due to the presence of coarse second phase particles. The corrosion resistance of these specimens treated at 820 ℃/2 h AC+C.R. +580℃/50 h AC and 700 ℃/4 h AC +C. R. +580 ℃/50 h AC is in between. Heat treatments have less influence on hydrogen uptake of N36 than that of Zr-4. This may be the reason that the second phase particles in N36 alloy is less reactive with hydrogen than that of Zr(Fe,Cr)2 SPPs in Zr-4.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第2期194-199,共6页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(50371052) 上海市重点学科建设资助项目(T0101)
关键词 锆合金 耐腐蚀性能 吸氢 第二相 zirconium alloy corrosion resistance hydrogen uptake second phase particles
  • 相关文献

参考文献14

  • 1KEARNS J J. Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, zircaloy-2 and zircaloy-4 [ J]. J Nucl Mat, 1967, 22:292-303.
  • 2LEMAIGNAN C, MOTTA A T. Zirconium alloys in nuclear application [ M ]. Beijing: Science Press, 1999:3-48.
  • 3MARDON J P, CHARQUET D, JEAN S. Influence of composition and fabrication process on out-of-pile and inpile properties of M5 alloy [ C]// Zirconium in the Nuclear Industry, 12th International Symposium, ASTM STP 1354. West Conshohocken: American Society for Testing and Materials, 2000:505-524.
  • 4姚美意,周邦新,李强,刘文庆,苗志,俞应华.合金成分对锆合金焊接区腐蚀时吸氢性能的影响[J].稀有金属材料与工程,2004,33(6):641-645. 被引量:11
  • 5姚美意,周邦新,李强,刘文庆,王树安,黄新树.第二相对Zr-4合金在400℃过热蒸汽中腐蚀吸氢行为的影响[J].稀有金属材料与工程,2007,36(11):1915-1919. 被引量:16
  • 6李强,刘文庆,周邦新.变形及热处理对Zr-Sn-Nb合金中β-Zr分解的影响[J].稀有金属材料与工程,2002,31(5):389-392. 被引量:32
  • 7LIN Y P, WOO O T. Oxidation of βZr and related phases in Zr-Nb alloy: an electron microscopy investigation[J]. J Nucl Mat, 2000, 277:11-27.
  • 8PECHEUR D. Oxidation of βNb and Zr (Fe, V)2precipitates in oxide films formed on advanced Zr-based alloys [J]. J Nucl Mat, 2000, 278:195-201.
  • 9JEONG Y H, LEE K O, KIM H G. Correlation between microstructure and corrosion behavior of Zr-Nb binary alloy [J]. J Nucl Mater, 2002, 302-9-19.
  • 10李中奎,刘建章,周廉,李聪,赵文金,张建军.新锆合金耐蚀性能研究[J].原子能科学技术,2003,37(z1):84-87. 被引量:12

二级参考文献32

  • 1周邦新,李强,姚美意,刘文庆,褚玉良.锆-4合金在高压釜中腐蚀时氧化膜显微组织的演化[J].核动力工程,2005,26(4):364-371. 被引量:46
  • 2[1]J P Foster, J Dougherty, M G Burke et al. Influence of Final Recrystallization Heat Treatment on Zircaloy-4 Strip Corrosion [J]. J. Nucl. Mat., 1990, 173:164~178.
  • 3[2]Zhou Bangxin, Zhao Wenjin, Miao zhi et al. The Effect of Heat Treatment on the Corrosion Behavior of Zircaloy-4[R], China Nuclear Science and Technology Report, CNIC-01074, SINRE-0066, China Nuclear Information Center, Atomic Energy Press, 1996.
  • 4[3]J P Mardon, G Garner, P Beslu, D Charquet, J Senevat. Update on the Development of Advanced Zirconium Alloys for PWR Fuel Rod Cladding [R]. ANS Fuel Performance Conference in Portland (USA), March,2~61997.
  • 5[4]K N Choo, Y H Kang, S I Pyum et al. Effect of Composition and Heat Treatment on the Microstructure and Corrosion Behavior of Zr-Nb Alloys [J]. J. Nucl. Mat.1994, 209:226~235.
  • 6[5]Y P Lin and O T Woo, Oxidation of β-Zr and Related Phases in Zr-Nb Alloy: an Electron-Microscopy Investigation[J]. J. Nucl. Mat., 2000, 277:11~27.
  • 7[6]D Pecheur, Oxidation of β-Nb and Zr (Fe, V)2 Precipitates in Oxide Films Formed on Advanced Zr-based Alloys [J]. J. Nucl. Mat., 2000, 278:195~201.
  • 8[1]Sabol GP, Kilp GR, Balfour MG, et al. Zirconium in the Nuclear Industry[A]. 8th Int Symp:ASTM STP1023[C]. Philadelphia: ASTM, 1989.227~224.
  • 9[2]Nikulina AV, Bibilashvili YK, Markelov PP, et al. Zirconium in the Nuclear Industry[A]. 11th Int Symp:ASTM STP1295[C]. Philadelphia: ASTM, 1996.785~804.
  • 10[3]Mardon P, Charquet D, Senevat J, et al. Update on the Development of Advanced Zirconium Alloys for PWR Fuel Rod Claddings[M]. Portland:ANS, 1991.405~412.

共引文献93

同被引文献105

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部