期刊文献+

改进型Prony算法在电力系统低频振荡波形分析中的应用研究 被引量:5

The Application of Improved Prony Algorithm in the Waveform Analysis of low Frequency Oscillation in Power System
在线阅读 下载PDF
导出
摘要 介绍了电力系统中常见的低频振荡现象,指出了各种常用的信号分析方法在分析低频振荡时存在的的不足。探讨了Prony算法在实际应用中所需要解决的问题,进而立足于尽量减小噪声对Prony分析所造成的影响的原则,在算法的理论上和分析方式上提出各种改进措施来提高算法的精度。最后通过仿真数据和现场数据的分析验证了这些改进措施是有效可行的。充分说明改进后的Prony算法可以对现场的实际低频振荡波形进行准确分析,是一种准确而有效的分析方法。 In this paper,the common low frequency oscillation in power system is introduces. The deficiency in the analysis of low-frequency oscillation when using various signal analysis methods is pointed out. The problems which need to be solved in the applicatioin of the algorithm are discussed.Based on the principle of eliminating the noise impact on the prony algorithm,many progresses on the theory and analysis mode have been made to improve the accuracy of the algorithm.The simulation data and the practical data testified the efficiency of the algorithm.The proposed method is capable of giving accurate analysis of field waveforms generated in low frequency oscillation.
出处 《华中电力》 2008年第2期1-4,7,共5页 Central China Electric Power
基金 湖北省自然科学基金青年杰出人才项(CCR0044)
关键词 PRONY算法 低频振荡 噪声 改进 精度 广域测量系统 prony algorithm low frequency oscillation noise improvement accuracy WAMS
  • 相关文献

参考文献6

二级参考文献24

  • 1魏木生.用Prony方法计算信号数据参数的误差分析[J].计算数学,1995,17(4):349-359. 被引量:2
  • 2赵书强.电力系统振荡模式分析与控制的分群等值方法研究[M].华北电力大学,1999..
  • 3Wong D Y, Rogers G J, Pometta B, et al. Eigenvalue analysis of very large power systems [J]. IEEE Trans on Power Systems, 1988, 3: 472-480.
  • 4Sanchez-Gasca J J, Chow J H. Performance comparison of three identification methods for the analysis of electromechanical oscillation [J]. IEEE Trans on Power Systems, 1999, 14(3): 995-1002.
  • 5Hauer J F. Application of prony analysis to the determination of modal content and equivalent models for measured power system response [J]. IEEE Trans on Power Systems, 1991, 6(3): 1062-1068.
  • 6Kumaresan R, Tufts D W, Scharf L L. A prony method for noisy data: Choosing the signal components and selecting the order in exponential signal models [J]. Proc IEEE, 1984, 72(2): 230-233.
  • 7Trudnowski D J. Order reduction of large-scale linear oscillatory system models [J]. IEEE Trans on Power System, 1994, 9(1): 451-458.
  • 8苟北,陈陈,提兆旭.Prony算法在电力系统负荷动态模型辨识中的应用研究[J].电力系统自动化,1997,21(1):21-24. 被引量:18
  • 9Zbigniew L, Tadeusz L, Jacek R. Advanced spectrum estimation methods for signal analysis in power electronics[J]. IEEE Trans on Industrial Electronics, 2003, 50(3): 514-519.
  • 10Trudnowaki D J, Johnson J M, Hauer J F. Making Prony analysis more accurate using multiple signals[J]. IEEE Trans on Power Systems,1999, 14(1): 226-231.

共引文献258

同被引文献75

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部