期刊文献+

求解连续空间优化问题的量子蚁群算法 被引量:47

Quantum ant colony algorithm for continuous space optimization
在线阅读 下载PDF
导出
摘要 针对蚁群算法只适用于离散优化问题的局限性和收敛速度慢的问题,提出了求解连续空间优化问题的量子蚁群算法.该算法每只蚂蚁携带一组表示蚂蚁当前位置信息的量子比特;首先根据基于信息素强度和可见度构造的选择概率,选择蚂蚁的前进目标;然后采用量子旋转门更新蚂蚁携带的量子比特,完成蚂蚁的移动;采用量子非门实现蚂蚁所在位置的变异,增加位置的多样性;最后根据移动后的位置完成蚁群信息素强度和可见度的更新.该算法将量子比特的两个概率幅都看作蚂蚁当前的位置信息,在蚂蚁数目相同时,可使搜索空间加倍.以函数极值问题和神经网络权值优化问题为例,验证了算法的有效性. To tackle the shortcoming of ant colony optimization which can only be applied to discrete problems and hold a slow convergence rate, a novel method for solving optimization problems in continuous space is presented. In this algorithm, each ant carries a group of quantum bits which represent the position of the ant. Firstly, the target where the ant is going to move is selected according to the selection probability based on pheromone information and heuristic information. Secondly, quantum bits of the ant are updated by quantum rotation gates so as to enable the ant to move. Some quantum bits are mutated by quantum non-gate so as to increase the variety of ant positions. Finally, pheromone information and the heuristic information are updated according to the new position of each ant arrived at. In this algorithm, both probability amplitudes of a quantum bit are regarded as position information belonging to an ant, a double searching space is acquired for ant colony which hold the same number of ants. At last, the availability of the algorithm is illustrated by two application examples of function optimization and weight optimization of neural networks.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第2期237-241,共5页 Control Theory & Applications
基金 国家自然科学基金资助项目(60773065)
关键词 量子计算 蚁群算法 连续空间优化 quantum computing ant colony algorithm continuous space optimizing
  • 相关文献

参考文献11

  • 1DORIGO M,MANIEZZO V,COLORNI A.Ant system:Optimization by a colony of cooperating agents[J].IEEE Transactions on System,Man,and Cybernetics,1996,26(1):29-41.
  • 2DORIGO M,GAMBARDELLA L M.Ant colony system:A cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
  • 3COLORNI A,DORIGO M,MANIEZZO V.Ant colony system for job-shop scheduling[J].Belgian Journal of Operations Research Statistics and Computer Science,1994,34(1):39-53.
  • 4MANIEZZO V.Exact and approximate nonditerministic tree search procedures for the quadratic assignment problem|J].Informs Journal of Computer,1999,11(4):358-369.
  • 5LBGUIzAIMON G,MICHALEWICZ Z.A new version of ant system for subset problems[C]//Proceedings of the 1999 Congress on Evolutionary Computation.Washington,DC,USA:IEEE Press,1999,2:1459-1464.
  • 6WANG Lei,WU Qidj.Ant system algorithm for optimization in continuous space[C]//Proceedings of the 2001 IEEE International Conference on Control Applications.Mexico City,Mexico:IEEE Press,2001:395-400.
  • 7JAYARAMAN V K,KULKARNI B D.SACHIN K,et al.Ant colony framework for optimal design and scheduling of batch plants[J].Computer and Chemical Engineering,2000,24(8):1901-1912.
  • 8GRIGOKENKO I,GARCIA M E.Calculation of the partition function using quantum genetic algorithms[J].Physica A,2002,313:463-470.
  • 9RAMOS R V.Numerical algorithms for use in quantum information[J].Journal of Computational Physics,2003,192(1):95-104.
  • 10李士勇,李盼池.基于实数编码和目标函数梯度的量子遗传算法[J].哈尔滨工业大学学报,2006,38(8):1216-1218. 被引量:60

二级参考文献17

  • 1王笑蓉,吴铁军.基于Petri网仿真的柔性生产调度——蚁群-遗传递阶进化优化方法[J].浙江大学学报(工学版),2004,38(3):286-291. 被引量:18
  • 2希梅尔布劳DM.实用非线性规划[M].科学出版社,1981.435-481.
  • 3JAYARAMAN V K, KULKARNI B D, SACHIN K,et al. Ant colony framework for optimal design and scheduling of batch plants [J]. Computer and Chemical Engineering, 2000,24(8) : 1901 - 1912.
  • 4DORIGO M, MANIEZZO V C. An ant system:Optimization by a colony of cooperating agents [J].IEEE Transaction on Systems, Man Cybernet B, 1996,26(1):29 -41.
  • 5STUTZLE T, HOOS H. MAX-MIN ant system and local search for the traveling salesman problem [A].Proceedings of the IEEE International Conference on Evolutionary Computation [ C ]. Indianapolis: IEEE,1997:309 -314.
  • 6DORIGO M, GAMBARDELLA I. M. Ant colonies for the traveling salesman problem [J]. Biosystems, 1997,43(2) :73 - 81.
  • 7CORNE D, DORIGO M, GI.OVER F. New ideas in optimization [M]. London: McGraw-Hill, 1999 : 11 - 32.
  • 8DORIGO M, BONABEAU E, THERAULAZ G. Ant algorithms ant stigmergy [J]. Future Generation Computer Systems, 2000,16 ( 9 ) : 851 - 871.
  • 9WANG Lei, WU Qi-di. Linear system parameters identification based on ant system algorithm [A].Proceedings of the 2001 IEEE International Conference on Control Applications [C]. Mexico: IEEE,2001:401 -406.
  • 10WANG Lei, WU Qi-di. Ant system algorithm for optimization in continuous space [A]. Proceedings of the 2001 IEEE International Conference on Control Applications [C]. Mexico: IEEE, 2001 : 395 - 400.

共引文献67

同被引文献484

引证文献47

二级引证文献315

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部