期刊文献+

超磁致伸缩微位移执行器的矢量阻抗分析模型 被引量:5

Vector impedance analysis model for giant magnetostrictive micro-displacement actuator
在线阅读 下载PDF
导出
摘要 基于线性压磁方程、机电换能方程和阻抗分析理论,建立了超磁致伸缩执行器的矢量阻抗分析模型。模型中将执行器系统的矢量阻抗分为机械导纳和电气阻抗两部分讨论,在机械导纳中引入负载影响,将压磁系数定义为复常数,模拟磁滞效应;在电气阻抗中,通过在求解的超磁致伸缩材料内部磁场引入涡流影响项来模拟系统的非线性特性;两部分之和得出超磁致伸缩微位移执行器系统的矢量阻抗。实验结果显示,模型计算的系统矢量阻抗值与测量值间幅值误差约7%,相位误差约7.7%,表明所建立的模型能够近似描述系统在精密加工场合时的阻抗特性,可为超磁致伸缩微位移执行器的设计、控制和性能优化提供指导。 On the basis of linear piezomagnetism equation, electromechanical transformation equation and impedance analysis method, a vector impedance model of Giant Magnetostrictive Micro-displacement Actuator(GMA) system was set up. The model divided the vector impedance of system into two sections, mechanical admittance and electrical impedance. In the section of mechanical admittance, the external load influence was considered and the coefficient of piezomagnetism was defined as a constant complex variable to simulate the displacement hysteresis; in electrical impedance, an eddy current term was added to the solved magnetization of magnetostrictive material to simulated the nonlinear characteristics of the system. The sum of two sections was the system's vector impedance. The comparison between experimental and model data indicates that the errors between measured vector impedance and model data are about 7% in magnitude and 7.7 % in phase. The results show that the model can simulate the impedance characteristics of the system under the precision occasion, and can guide the design, control and the performance optimization of the GMA system.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2008年第5期870-877,共8页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.50775021) 新世纪优秀人才支持计划资助项目(No.NCET-04-0265)
关键词 超磁致伸缩微位移执行器 磁滞 涡流 矢量阻抗 Giant Magnetostrictive Micro-displacement Actuator (GMA) hysteresis eddy current vector impedance
  • 相关文献

参考文献12

二级参考文献42

共引文献110

同被引文献33

  • 1付建.浅谈结构健康监测的发展与应用[J].科技风,2010(7). 被引量:2
  • 2王雷,谭久彬,刘玉涛.超磁致伸缩体内涡流效应有限元分析[J].光学精密工程,2006,14(3):445-449. 被引量:19
  • 3那日苏,云国宏,荣建红.磁致伸缩薄膜-基底悬臂梁微致动器的设计与优化[J].中国科学(E辑),2007,37(7):914-922. 被引量:4
  • 4DEAN J, GIBBS M R J, Schrefl T. Finite-element analysis on cantilever beams coated with magnetos- trictive material[C]. IEEE Transactions on Mag- netics, 2006, 42(2):283-288.
  • 5KAVIRAJ B, GHATAK S K. Simulation of stress impedance effects in low magnetostrictive films[J]. Journal of Non-Crystalline Solids, 2007 (353) 1515-1520.
  • 6LEE S H, CHONGDU C. Investigation on the magnetomechanical behavior of trilayered GM actua- tor[J]. Journal of Materials Processing Technolo- gy, 2008(201) : 678-682.
  • 7ISHIYAMA K, YOKOTA C. Cantilevered actuator using magnetostrictive thin film[J]. Journal of Magnetism and Magnetic Materials, 2008 (320) : 2481-2484.
  • 8TIERCELIN N, PREOBRAZHENSKY V, MOR- TET V. Thin film magnetoelectric composites near spin reorientation transition[J]. Journal of Mag- netism and Magnetic Materials, 2009, 321 (11) : 1803-1807.
  • 9E. du Tremolet de Lacheisserie. Magnetostric tion: Theory and Applications of Magneto-elas ticity[M]. Boca Raton: CRC Press, 1993.
  • 10VICTOR H G, ROBERT C W. Strain and stress calculation in bulk magnetostrictive materials and thin films[J]. Journal of Magnetism and Mag- netic Materials, 2004(271) : 190-206.

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部