期刊文献+

分布式感知协作的扩展Monte Carlo定位算法 被引量:8

An Extended Monte Carlo Localization Approach Based on Collaborative Distributed Perception
在线阅读 下载PDF
导出
摘要 针对移动机器人难以单纯依赖自身传感器定位的问题,提出了一种分布式感知协作的扩展Monte Carlo定位方法.在定位过程中,机器人根据感知更新前后采样分布信息熵、有效采样数目及采样分布均匀性的变化,适时地从环境传感器的检测模型进行重采样,从而有效减少其位姿估计的不确定性.在算法的具体实现过程中,采用彩色摄像头作为环境传感器,摄像头的参数由机器人进行在线标定;然后依据标定的参数获得摄像头的检测模型.实验验证了该算法在解决全局定位和机器人绑架问题时的有效性. In order to overcome the difficulty of a mobile robot to perform localization only with its onboard sensors, an extended Morte Carlo localization algorithm based on collaborative distributed perception is proposed. In the process of localization, the robot timely executes resampling from detection models of environmental sensors according to the changes of sampling distribution information entropy, effective sample size and sampling distribution uniformity before and after the robot's perceptive update, and thus the pose estimation uncertainty is reduced effectively. When the algorithm is implemented, color cameras are adopted as environmental sensors and their parameters are calibrated by the robot online. And then detection models of the cameras can be obtained based on the calibrated parameters. Experiment results illustrate the validity of the approach in solving problems of global localization and " kidnapped robot". ,
出处 《机器人》 EI CSCD 北大核心 2008年第3期210-216,共7页 Robot
基金 国家863计划资助项目(2006AA040202 2007AA041703)
关键词 MONTE Carlo定位 信息熵 有效采样数目 环境传感器 Monte Carlo localization information entropy effective sample size environmental sensor
  • 相关文献

参考文献16

  • 1Thrun S. Probabilistic algorithms in robotics[J]. Artificial Intelligence Magazine, 2000, 21 (4): 93- 109.
  • 2吴庆祥,Bell David.可移动机器人的马尔可夫自定位算法研究[J].自动化学报,2003,29(1):154-160. 被引量:15
  • 3Thrun S, Beetz M, Bennewitz M, et al. Probabilistic algorithms and the interactive museum tour-guide rohot Minerva[J]. The International Journal of Robotics Research, 2000, 19( 11 ) : 972 -999.
  • 4George D, Barnes N. Particle attraction localisation [ A ]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. Piseataway, NJ, USA: IEEE, 2003. 1240- 1245.
  • 5Fox D. Adapling the sample size in particle filters through KLD-sampling[J]. The Interational Journal of Robotics Research, 2003, 22 (12) : 985 - 1003.
  • 6Fox D, Burgard W, Dellaert F, et al. Monte Carlo localization: Efficient position estimation for mobile robots [ A ]. Proeeedings of the National Conference on Artificial Intelligence[C]. Menlo Park, CA, USA: AAAI. 1999. 343-349.
  • 7Lenset S, Veloso M. Sensor resetting localization for poorly modelled mobile robots[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 2000. 1225 - 1232.
  • 8Kraetzschmar G K, Enderle S. Self-localization using sporadic features[J]. Robotics and Autonomous Systems, 2002, 40 (2-3) : 111 -119.
  • 9Thrun S, Fox D. Burgard W, et al. Rnbust Monte Carlo localization for mobile robots[ J ]. Artificial Intelligence, 2001, 128 ( 1-2 ) : 99 - 141.
  • 10Rekleitis I M. A proticle filter tutorial for mobile robot localization [ DB/OL]. http ://www. cim. megill.ca/-yiannis/particletutorial. pdf. 2004/2007.

二级参考文献6

  • 1Borenstein J, Everett B, Feng L. Navigating Mobile Robots: Systems and Techniques. Natick: A K Peters Press, 1996.67~96
  • 2Cox I J, Wilfong GT. Autonomous Robot Vehicles. New York: Springer-Verlag, 1990. 25~31
  • 3Feng L, Borenstein J, Everett H R. "Where am I?" sensors and methods for autonomous mobile robot positioning. In: Technical Report UM-MEAM-94-12, USA: University of Michigan, 1994.1~55
  • 4Thrun S, Buecken A, Burgard W et al. Map learning and high-speed navigation in RHINO. In: AI-based Mobile Robots: Case Studies of Successful Robot Systems, Kortenkamp D, Bonasso R P, Murphy R (eds.), USA: MIT Press, 1998.21~49
  • 5Ddieter Fox, Wolfram Burgard, Sebastian Thrun. Markov Localization For Mobile Robots In Dynamic Environments. Journal of Artificial Intelligence Research, 1999, 11:391~427
  • 6Wu Qing-Xiang, Bell David. Related value set algorithm for robot to distinguish image. In: Proceedings of the 3rd World Congress on Intelligent Control and Automation, Heifei: IEEE Press, 2000, 2:1546~1550

共引文献14

同被引文献135

引证文献8

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部