期刊文献+

基于图像处理的钢帘线表面缺陷特征分析

Feature Analysis of Surface Defect in Steel Wire Cord on Image Processing
在线阅读 下载PDF
导出
摘要 首先对钢帘线材图像进行预处理,以减小或消除噪声的影响,然后对钢帘线图像进行了缺陷特征分析,运用经典的边缘提取算法提取线材的面积与周长等几何特征,运用灰度共生矩阵来提取线材的纹理特征等来判断钢帘线表面是否有缩颈或耳子等缺陷.实验结果表明了该特征提取算法的有效性和实用性. Feature analysis of surface defect is a key factor for the steel wire cord surface defects auto-detecting system on image processing to work perfectly and accurately. First of all, the images of steel wire cord have been pretreated in order to reduce or eliminate the influence of noise, then with the method of the classical edge detection algorithm and gray co-occurrence matrix, and the geometical features of the image,such as the size and wire perimeter, the texture features are picked up to decide whether the steel wire cord has defects on its surface. The Results of experiments show that the feature extraction algorithm is effective and practicable.
出处 《湖北工业大学学报》 2008年第2期26-29,共4页 Journal of Hubei University of Technology
关键词 钢帘线 缺陷检测 图像处理 纹理特征 几何特征 steel wire cord defect detecting image processing texture feature geometical feature
  • 相关文献

参考文献5

二级参考文献18

  • 1[2]Rautaruukki New Technology. Defect Classification in Surface Inspection of Strip Steel. Steel Times, 1992(5): 214~216
  • 2[3]Badger J C, Enright Sean T. Automated surface inspection system. Iron and Steel Engineer, 1996 (3): 48~51
  • 3[4]Parsytech Computer GmbH. Software controlled on-line surface inspection. Steel Times International, 1998(3): 30~35
  • 4[5]Karayiannis N B. Accelerating the training of feed forward Neural Networks using generalized hebbian rules for inintializing the internal representation. IEEE Transactions on Neural Networks, 1996, (7)2: 419~426
  • 5[6]Sking J, Jorg R. Self-learning fuzzy controllers based on temporal back propagation. IEEE Trans. on Neural Networks, 1992, 3(5): 714~723
  • 6[7]Amari S, Murata N, Muller K R, et al. Asymptotic statistical theory of overtraining and cross-validation. In: Anon. ed. METR 95-06. Tokyo: Dept. of Mathematical Engineering and Information, Physics, Univ. of Tokyo, 1995.
  • 7Rao K R,Techniques Standards Image Videoand Audio Coding,1996年
  • 8Liu K,Pattern Recognition,1993年,26卷,6期,903页
  • 9Kundu A,Computer Vision,Graphics and Image Processing,1992年,54卷,5期,82页
  • 10Hong Ziquan,Pattern Recognition,1991年,24卷,3期,211页

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部