期刊文献+

变截面梁有限元分析 被引量:28

The finite element analysis of non-uniform beams
在线阅读 下载PDF
导出
摘要 针对工程结构中广泛应用的变截面构件,根据有限单元法基本原理,在假定变截面模式的基础上,推导了变截面平面梁单元的单元刚度矩阵.使用笔者所给的单元分析梁高呈线性变化及抛物线性变化的矩形截面梁,所得计算结果将更加逼近于精确解.笔者给出了一个变截面悬臂梁和简支梁算例,计算表明,若用通常的分段等刚度单元进行近似计算,必须使用较多的单元数才能趋近于精确解,运用该方法可以使变截面梁的分析大大简化. The stiffness matrix of a plane non-uniform beam was deduced to analyze the non-uniform members used increasingly in engineering structures based on the basic principles of finite element method and assuming the mode of non-uniform section. The non-uniform rectangular beams with both linear and parabolic variation heights of the transverse section were analyzed by use of given elements. It was showed that the results were more approach to the exact solutions. A non-uniform cantilever beam and a non-uniform simple supported beam were presented as an example, and the calculation results showed that, if segmental uniform finite elements were employed, more elements must be required to approach the current exact solution. So the present elements can apparently simplify the analysis of non-uniform beams.
出处 《浙江工业大学学报》 CAS 2008年第3期311-315,共5页 Journal of Zhejiang University of Technology
关键词 变截面梁 梁单元 刚度矩阵 有限单元法 non-uniform beam beam element stiffness matrix finite element method
  • 相关文献

参考文献4

二级参考文献15

  • 1张元海.斜交梁单元及其应用[J].兰州铁道学院学报,1996,15(3):5-11. 被引量:2
  • 2GBJ17-88.钢结构设计规范[S].[S].,..
  • 3邹风梧 刘中柱 等.积分表汇编[M].北京:宇航出版社,1992.163,168,151.
  • 4J.S.普齐米尼斯基(著),王德荣,等(译校).矩阵结构分析理论[M].北京:国防工业出版社,1960.
  • 5Xian-Ling Zhao,郭彦林.21世纪轻型钢结构的发展及展望[A].1998 中国土木工程学会第八界年会论文集[C].
  • 6S Timoshenko. Theory of elastic stability[M]. McGram-Hill Bood Company,1936.
  • 7G C Lee, M L Morrel and R L Ketter. Design of tapered Members. Welding Research Council Bulletin[J].No,173 June 1972.
  • 8马文华.杆件结构计算原理及应用程序[M].上海:上海科学技术出版社,1982.
  • 9B A Boley. On the accureace of the Bernoulli-Euler theory for beams of variable section[J]. Journal of Applied Mechanics, 1963,(30):373~378.
  • 10DBJ 08-68-97,轻型钢结构设计规程[S].

共引文献20

同被引文献150

引证文献28

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部