期刊文献+

一种基于EMD和ANC技术的自适应降噪方法 被引量:9

Adaptive noise reduction method based on EMD and ANC
在线阅读 下载PDF
导出
摘要 为了提高分析信号的信噪比,基于经验模态分解和自适应噪声抵消技术,提出了一种新的信号去噪方法。该方法首先对信号进行自适应噪声抵消,然后进行经验模态分解,得到不同尺度上的固有模态函数,再对不同尺度上的固有模态函数进行噪声属性判定,如果不是噪声则选用不同的滤波参数,进行自适应噪声抵消,最后对各尺度上噪声抵消后的信号进行重构,得到去噪后的信号。结果表明,该方法比基于最小均方误差准则的自适应噪声抵消方法更能有效地消除信号中的噪声。 In order to improve the signal noise ratio (SNR) of the analyzed signal, a kind of adaptive denoising scheme based on the empirical mode decomposition (EMD) and adaptive noise cancel (ANC) framework is presented. At first, the noisy signal is denoised by ANC, then it is decomposed adaptively into oscillatory components called imtrinsic mode functions (IMFs) by means of a process called sifting. Then the IMFs which are not noises, are processed separately by ANC. Finally, the filtered signals are synthesized to form the denoised signal. The results show that this method can eliminate the noise in the signal more effectively than the ANC method based on least mean square (LMS) criterion.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第5期810-812,共3页 Systems Engineering and Electronics
基金 国家自然科学基金资助课题(60472108)
关键词 经验模态分解 自适应噪声抵消 最小均方算法 降噪 empirical mode decomposition adaptive noise cancel least mean square algorithm noise reduction
  • 相关文献

参考文献8

  • 1Huang N E, et al. The empiricai mode decompostion and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]. Proc. of the Royal Soriety of London, 1998, A (454): 903 -995.
  • 2Huang N E, Shen Z, Long S R. A new view of nonlinear water waves the Hilbert spectrum[J]. Ann. Rev. Fluid. Mecll., 1999,31. 417-457.
  • 3Boudraa A O, Cexus J C, Saidi Z. EMD-based signal noise reduction[J]. ISNN Trans. on Engineering, Computing and Technology, 2004, 1305-5313.
  • 4江力,李长云.基于经验模分解的小波阈值滤波方法研究[J].信号处理,2005,21(6):659-662. 被引量:20
  • 5Swaruo A, Philip B, et aI. Join synopses for approximate query answering[C].Proc. Of the ACM SIGMOD, Intl. Conf. on Management of Data, New York: ACM Press, 1999: 275 -286.
  • 6Terradas J, Oliver R, Ballester J L. Application of statistical techniques to the analysis of solar coronal oscillation[J]. The Astrophysical Journal, 2004, 614: 435-447.
  • 7罗小东,贾振红,王强.一种新的变步长LMS自适应滤波算法[J].电子学报,2006,34(6):1123-1126. 被引量:127
  • 8Doclo S, Dologlou I, Moolen M. A movel lterative signal enhalgorithm for noise redaction in speech[C].Proc. of the 5^th International Conference on Spoken Language Processing(ICSLP98), Sydney, Australia, December, 1998:1435 - 1438.

二级参考文献21

  • 1覃景繁,韦岗.基于S型函数的变步长LMS自适应滤波算法[J].无线电工程,1996,26(4):44-47. 被引量:40
  • 2Donoho D L.Adapting to unknown smoothmess via waveletshrinkage[J].J.Amer.Statist.Assoc.1995,90:1200—1224.
  • 3Donoho D L,Johnstone I.Wavelet shrinkage asymptopia[J].Joumal of Royal Statistical Society,1995,57(2):301-369.
  • 4Donoh D L. Denoising by soft-thresholding [J]. IEEE Transaction on Information, 1995, 41(3): 613-627.
  • 5Huang N.E, Shen Z, Long S.R. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proc R. Soc. Lond.A, 1998, 454: 899-995.
  • 6Huang N. E., Shen Z., Long S.R.. A new view of the nonlinear water waves: The Hilbert spectrum [J]. Annu.Rev. Fluid Mech., 1999, 31: 417-457.
  • 7Patrick Flandrin, Gabriel Rilling and Paulo Goncalves.Empirical Mode Decomposition as a Filter Bank[J]. IEEE Signal Processing Letters, 2004, 11(2): 112-114.
  • 8维德罗B 史蒂恩斯SD 王永德 龙宪惠 译.自适应信号处理[M].成都:四川大学出版社,1989..
  • 9WIDROW B,MCCOOL J M,LARMORE M G,JOHNSON C R.Stationary and nonstationary learning characteristics of the LMS adaptive filter[ J].Proc IEEE,1976,64 (8):1947-1951.
  • 10GELFAND S B,WEI Y KROGMEIER J V.The stability of variable step-size LMS algorithms[ J].IEEE Trans on Signal Processing,1999,47 (12):3277-3288.

共引文献145

同被引文献108

引证文献9

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部