期刊文献+

基于双阶样条的代数双曲B样条升阶及割角算法 被引量:2

Degree Elevation of Algebraic Hyperbolic B-spline Curves and Corner Cutting Based on Bi-order Spline
在线阅读 下载PDF
导出
摘要 考虑代数双曲B样条曲线的升阶问题,从理论上证明了曲线的升阶可以理解为控制顶点的割角过程.为了实现代数双曲B样条曲线的升阶,文中构造了一组基函数——双阶代数双曲B样条基函数,这组基函数并不具有统一的阶数,而具有"双阶"性质.代数双曲B样条基函数与双阶样条基函数之间的变换公式可以导出曲线升阶的割角算法. The authors consider the degree elevation of algebraic hyperbolic (AH) B-spline curves and prove that the degree elevation of AH B-spline curves can be interpreted as corner cutting process in theory. A new class of basis functions, to be called bi order algebraic hyperbolic B-spline basis functions, is constructed and discussed by the integral definition of spline. This class of basis functions has bi-order property and the transforming formulae between AH B-spline and bi-order AH B-spline lead to the corner cutting for degree elevation of AH B-spline curves.
作者 张波 汪国昭
出处 《计算机学报》 EI CSCD 北大核心 2008年第6期1056-1062,共7页 Chinese Journal of Computers
基金 国家自然科学基金(10371110 60473130) 国家"九七三"重点基础研究发展规划项目基金(2004CB318000)资助~~
关键词 双阶样条 代数双曲B样条曲线 升阶 割角算法 bi-order spline algebraic hyperbolic B-spline degree elevation corner cutting
  • 相关文献

参考文献10

  • 1Wang Guo-Zhao, Chen Qin-Yu, Zhou Ming-Hua. NUAT B-spline curves. Computer Aided Geometric Design, 2004, 21(2) : 193-205.
  • 2Li Ya-Juan, Wang Guo-Zhao. Two kinds of B-basis of the algebraic hyperbolic space. Journal of Zhejiang University, 2005, 6A(7): 750-759.
  • 3Barry P J, Goldman R N. A recursive proof of a B-spline identity for degree elevation. Computer Aided Geometric Design, 1988, 5(2): 173-175.
  • 4Cohen E, Lyche T, Schumaker L. Algorithms for degree raising of splines. ACM Transactions on Graphics, 1985, 4(3) : 171-181.
  • 5Huang Qi-Xing, Hu Shi-Min, Martin R. Fast degree elevation and knot insertion for B-spline curves. Computer Aided Geometric Design, 2005, 22(2): 183-197.
  • 6秦开怀.非均匀B样条曲线升阶的新算法[J].计算机学报,1996,19(7):537-542. 被引量:10
  • 7Piegl L, Tiller W. The NURBS Book. 2nd Edition. Berlin: Springer-Verlag, 1997.
  • 8Prautzsch H. Degree elevation of B-spline curves. Computer Aided Geometric Design, 1984, 1(2): 193-198.
  • 9Prautzsch H, Piper B. A fast algorithm to raise the degree of B-spline curves. Computer Aided Geometric Design, 1991, 8 (4) : 253-265.
  • 10Lu Yong-Gang, Wang Guo-Zhao, Yang Xun-Nian. Uniform hyperbolic polynomial B-spline curves. Computer Aided Geometric Design, 2002, 19(6): 379-393.

二级参考文献1

共引文献9

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部