期刊文献+

基于并行遗传算法的K-means聚类研究 被引量:17

Research of K-means Clustering Method Based on Parallel Genetic Algorithm
在线阅读 下载PDF
导出
摘要 针对传统K-means聚类算法对初始聚类中心的选择敏感,以及聚类数K难以确定的问题,提出一种基于并行遗传算法的K-means聚类方法。该方法采用一种新型的可变长染色体编码方案,随机选择样本点作为初始聚类中心形成染色体,然后结合K-means算法的高效性和并行遗传算法的全局优化能力,通过种群内的遗传、变异和种群间的并行进化、联姻,有效地避免了局部最优解的出现,同时得到了优化的聚类数目和聚类结果。实验表明该方法是一种精确高效的聚类方法。 As K-means Clustering Algorithm is sensitive to the choice of the initial cluster centers and it's difficult to determine the cluster number, we propose a K-means Clustering Method Based on Parallel Genetic Algorithm. In the method, we adopt a new strategy of Variable-Length Chromosome Encoding and randomly chose initial clustering centers to form chromosomes among samples. Combining the efficiency of K-means Algorithm with the global optimization ability of Parallel Genetic Algorithm, the local optimal solution is avoided and the optimum number and optimum result of cluster are obtained by means of heredity, mutation in the community, and parallel evolution, intermarriage among communities. Experiments indicated that this algorithm is efficient and accurate.
出处 《计算机科学》 CSCD 北大核心 2008年第6期171-174,共4页 Computer Science
基金 国家自然科学基金(No60442005,No60673040) 国家社会科学基金(No06BYY029) 教育部重点研究项目(No105117) 湖北省教育厅科(NoD200728002)
关键词 并行遗传算法 可变长染色体编码 K-MEANS算法 聚类 Parallel genetic algorithm, Variable-length chromosome encoding, K-means algorithm, Clustering
  • 相关文献

参考文献11

  • 1Larsen B, Aone C. Fast and effective text mining using linear time document clustering[A] //Proc, of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, August 1999:16-22
  • 2MacQueen J B. Some methods for classification and analysis of multivariate observations//Proc. of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967:281-297
  • 3Zhao Y, Karypis G. Criterion Functions for Document Clustering: Experiments and Analysis[R]. Technical Report. # 01- 04. Department of Computer Science, University of Minnesota, 2001
  • 4Steinbach M, Karypis G, Kumar V. A comparison of Document Clustering Techniques[R]. Department of Comp Sci & Eng University of Minnesota, 2000:1-20
  • 5Salton G, Wang A, Yang C S. A vector space model for autornatic indexing[J]. Communication of the ACM, 1975, 18(11) : 613-620
  • 6Muhlenbein H. Evolution in time and space-the parallel genetic algorithm. In Rawlins, Foundations of Genetic Algorithms: Morgan Kaufmann, 1991
  • 7Hung S L, Adeli H. A parallel genetic/neural network learning algorithm for MIMD shared memory machines. IEEE Transactions on Neural Networks, 1994, 5(6):900-908
  • 8Liu Juan, Iba H. Selecting informative genes with parallel GA in tissue classification. Genome Informaties, 2001, 3(12): 14- 23
  • 9Goldberg D E, Deb K, Korb B. Don't Worry Be Messy//Proc. of ICGA. 1991:24-30
  • 10Ramze R M, Lelieveldt B P F, Reiber J H C. A new cluster validity indexes for the fuzzy c-mean[J]. Pattern Recognition Letters, 1998, 19:237-246

同被引文献148

引证文献17

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部