期刊文献+

基于Cosserat连续体的CAP弹塑性模型与应变局部化有限元模拟 被引量:7

CAP ELASTOPLASTIC COSSERAT CONTINUUM MODEL AND FINITE ELEMENT SIMULATION OF STRAIN LOCALIZATION
在线阅读 下载PDF
导出
摘要 提出了一个非光滑多重屈服面的CAP弹塑性Cosserat连续体模型。考虑到Cosserat连续体理论的特点,将其应力和应变速率向量的偏量和球量部分分离,针对各分屈服面分别被激活及某两个屈服面同时被激活的情况,发展了非线性本构速率方程积分的一致性算法,且率本构方程积分的返回映射算法和一致性弹塑性切线模量矩阵均为显式表示,避免了计算切线本构模量矩阵时的矩阵求逆。利用所发展的模型和一致性算法,数值模拟了平面应变条件下由应变软化及非关联塑性引起的边坡渐进破坏问题和隧道开挖问题。数值结果表明,所发展的模型和一致性算法在保持应变局部化问题的适定性、保证数值求解过程的收敛性和计算效率等方面具有良好的性能。 An elastoplastic Cosserat continuum model for CAP constitutive model with non-smooth multiplicative yield surfaces is presented. Splitting the scalar product of the stress rate and the strain rate into the deviatoric and the spherical parts, the consistent algorithm of the CAP elastoplastic model is derived according to one or two yielding surfaces being activated in the framework of Cosserat continuum theory, i.e. the return mapping algorithm for the integration of the rate constitutive equation and the closed form of the consistent elastoplastic tangent modulus matrix. The matrix inverse operation usually required in the calculation of elastoplastic tangent constitutive modulus matrix is avoided. The strain localization and progressive failure phenomena of the slope due to strain softening and the failure of the tunnel due to the excavation are numerically simulated using the developed model with corresponding finite element method. Numerical results of the plane strain examples illustrate the capability and good performance of the present model in keeping the well-posedness of the boundary value problems with strain softening behaviors and non-associated plasticity incorporation and ensuring the second order convergence rate and the computational efficiency of the model in numerical solution procedure.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2008年第5期960-970,共11页 Chinese Journal of Rock Mechanics and Engineering
基金 国家自然科学基金重大研究计划项目(90715011) 国家自然科学基金资助项目(10672033) 大连理工大学青年教师培养基金项目
关键词 数值模拟 Cosserat连续体 CAP弹塑性 一致性算法 闭合型切线本构模量矩阵 应变局部化 numerical simulation Cosserat continuum CAP elastoplasticity consistent algorithm closed form of tangent constitutive modulus matrix strain localization
  • 相关文献

参考文献16

  • 1郑颖人 沈珠江 龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002..
  • 2SIMO J C,HUGHES T J R.Computational inelasticity[M].New York:Springer,1998.
  • 3LI X K,THOMAS H R,FAN Y Q.Finite element method and constitutive modelling and computation for unsaturated soils[J].Computer Methods in Applied Mechanics and Engineering,1999,169(1):135-159.
  • 4PANDE G N,PIETRUSZCZAK S.Symmetric tangential stiffnesses formulation for non-associated plasticity[J].Computers and Geotechnics,1986,2(2):89-99.
  • 5RUDNICKI J W,RICE J R.Conditions for the localization of deformation in pressure-sensitive dilatant materials[J].Journal of the Mechanics and Physics of Solids,1975,23(2):371-394.
  • 6LI X K,ZHANG J B,ZHANG H W.Instability of wave propagation in saturated poroelastoplastic media[J].International Journal for Numerical and Analytical Methods in Geomechanics,2002,26(6):563-578.
  • 7DE BORST R,SLUYS L J.Localization in a Cosserat continuum under static and dynamic loading conditions[J].Computer Methods in Applied Mechanics and Engineering,1991,90(6):805-827.
  • 8DE BORST R.A generalization of J2-flow theory for polar continua[J].Computer Methods in Applied Mechanics and Engineering,1993,103(3):347-362.
  • 9STEINMANN P.A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity[J].International Journal of Solids and Structures,1994,31(8):1 063-1 084.
  • 10LI X K,TANG H X.A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modeling of strain localization[J].Computers and Structures,2005,83(1):1-10.

二级参考文献20

  • 1Muhlhaus H B,Vardoulakis I. The thickness of shear bands in granular materials[J]. Geotechnique,1987,37(3):271-283.
  • 2Muhlhaus H B. Application of Cosserat theory in numerical solutions of limit load problems[J]. Ing. Arch.,1989,59(2):124-137.
  • 3de Borst R,Sluys L J. Localization in a Cosserat continuum under static and dynamic loading conditions[J]. Comput. Methods Appl. Mech. Eng.,1991,90(2):805-827.
  • 4de Borst R. Simulation of strain localization:a reappraisal of the Cosserat continuum[J]. Eng. Comput.,1991,8(4):317-332.
  • 5de Borst R. A generalization of J2-flow theory for polar continua[J]. Comput. Methods Appl. Mech. Eng.,1993,103(3):347-362.
  • 6Tejchman J,Wu W. Numerical study on patterning of shear bands in a Cosserat continuum[J]. Acta Mechanical,1993,99(2):61-74.
  • 7Steinmann P. A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity[J]. Int. J. Solids Structures,1994,31(8):1 063-1 084.
  • 8Steinmann P. Formulation and computation of geometrically nonlinear gradient damage[J]. Int. J. Numer. Meth. Eng.,1999, 46(5):757-779.
  • 9Li Xikui,Duxbury P G,Lyons P. Considerations for the application and numerical implementation of strain hardening with the Hoffman yield criterion[J]. Computers & Structures,1994,52(4):633-644.
  • 10Duxbury P G,Li Xikui. Development of elasto-plastic material models in a natural co-ordinate system[J]. Comput. Methods Appl. Mech. and Eng.,1996,135(4):283-306.

共引文献237

同被引文献63

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部