期刊文献+

基于模糊支持向量机的多分类算法研究 被引量:8

Research of multi-class algorithm based on fuzzy support vector machine
在线阅读 下载PDF
导出
摘要 针对支持向量机理论中的多分类问题以及SVM对噪声数据的敏感性问题,提出了一种基于二叉树的模糊支持向量机多分类算法。该算法是在基于二叉树的支持向量机多分类算法的基础上引入模糊隶属度函数,根据每个样本数据对分类结果的不同影响,通过基于KNN的模糊隶属度的度量方法计算出相应的值,由此得到不同的惩罚值,这样在构造分类超平面时,就可以忽略对分类结果不重要的数据。通过实验证明,该算法有较好的抗干扰能力和分类效果。 An approach of binary tree fuzzy multi-class support vector machines algorithm was proposed due to the multiclassification problem and sensitivity to the noisy data of the Support Vector Machine algorithm (SVM). The algorithm introduced a K-Nearest Neighbor (KNN) fuzzy membership function according to Binary Tree Support Vector Machine 'algorithm (BTSVM). Depending on the different influences of respective data set on the classification results and measuring method of the KNN fuzzy membership function, it can calculate the corresponding value and additionally obtain the different penalty value and ignore the unimportant data for the classification results, while constructing the classification hyper-planes. Experimental results indicate that the algorithm has a better ability of anti-interference and better classification effects.
出处 《计算机应用》 CSCD 北大核心 2008年第7期1681-1683,共3页 journal of Computer Applications
基金 北京市教委科技发展计划项目(KM200610028015) 国家自然科学基金资助项目(60773130)
关键词 模糊支持向量机 多分类 二叉树 fuzzy support.vector machine multi-class binary tree
  • 相关文献

参考文献6

  • 1VAPNIK V. Statistical leraning theory[ M]. New York: John Wildey & Sons, 1998.
  • 2应伟,王正欧,安金龙.一种基于改进的支持向量机的多类文本分类方法[J].计算机工程,2006,32(16):74-76. 被引量:28
  • 3安金龙,王正欧,马振平.一种新的支持向量机多类分类方法[J].信息与控制,2004,33(3):262-267. 被引量:46
  • 4LIN C F, WAN S D. Fuzzy support vector machines [ J ] . IEEE Transactions on Neural Networks, 2002, 13(2) : 464 -471.
  • 5PLATT J. Sequential minimal optimization: A fast algorithm for training support vector machine[ EB/OL]. [ 2006 - 10 - 10]. http://research, microsoft, com/users/jplatt./smoTR, pdf.
  • 6邓乃扬 田英杰.数据挖掘中的新方法[M].北京:科学出版社,2004..

二级参考文献13

  • 1王明春,王正欧,张楷,郝玺龙.一种基于CHI值特征选取的粗糙集文本分类规则抽取方法[J].计算机应用,2005,25(5):1026-1028. 被引量:8
  • 2Bottou L, Cortes C, Denker J. Comparison of classifier methods:a case study in handwriting digit recognition [ A]. Preceedings of the 12th IAPR International Conference on Pattern Recognition [ C ]. Jerusalem: IEEE, 1994.77 ~ 82.
  • 3Platt J C, Cristianini N, Shawe-Taylor J. Large margin DAGs for multiclass classification [ A ]. Advances in Neural Information Processing Systems [C]. 2000.547 -553.
  • 4Vapnik V. Statistical Learning Theory [ M]. New York:Wiley,1998.
  • 5Crammer K , Singer Y. On the lesrnability and design of output codes for multiclass problems [A]. Proceedings of the Thirteenth Annual Conference on Computational Learning Theory [ C ]. SanFransisco:Morgan Kanfmann, 2000.35 ~46.
  • 6Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines. hines [ J ]. IEEE Transactions on Neural Networks, 2002,13(2) :415 -425.
  • 7边肇祺 张学工 等.模式识别[M].北京:清华大学出版社,2001..
  • 8Kreβel U. Pairwise classification and support vector machines [ A]. Advances in Kernel Methods - Support Vector Learning [C]. Cambridge, MA:MIT Press,1999.255 -268.
  • 9Vasehgi S V. State Duration Modeling in Hidden Markov Models[J].Signal processing,1995, 41(1): 31-41.
  • 10Vladimir N, Vapnik. Statistical Learning Theory[M]. New York:John Wiley&Sons, Inc., 1998.

共引文献89

同被引文献78

引证文献8

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部