期刊文献+

一类非线性发展方程的全离散有限体积元方法及其分析 被引量:3

Fully discrete finite volume method and numerical analysis for a class of nonlinear evolution equation
在线阅读 下载PDF
导出
摘要 给出了求解一类非线性发展方程的全离散一次有限体积元格式,并给出了L2和H1误差估计。最后通过数值例子说明了该方法的有效性。 This paper gives a fully discrete finite volume element method based on a piecewise linear element space for a class of nonlinear evolution equation. The error estimates in L^2 and H^1 norms are obtained. Finally, some results show that the method is very effective for solving this class of problems.
作者 朱玲 张志跃
出处 《计算力学学报》 CAS CSCD 北大核心 2008年第3期304-309,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(10471067) 江苏省科技厅(BK2006215) 江苏省教育厅(2005101TSJB156) 江苏省政府海外留学基金资助项目
关键词 一次有限体积元 L^2估计 H^1估计 finite volume method L^2 norm H^1 norm
  • 相关文献

参考文献6

  • 1庄蔚 杨桂通.孤波在非线性弹性杆中的传播[J].应用数学与力学,1986,7(7):571-582.
  • 2张志跃.一类非线性发展方程的交替分段显隐并行数值方法[J].计算力学学报,2002,19(2):154-158. 被引量:6
  • 3ZHANG Zhi-yue. The finite element numerical analysis for a class nonlinear evolution equations[J]. Appl Math Comput ,2005,166(3) : 489-500.
  • 4SHOWALTER R E, TING T W. Pseudoparabolie partial differential equations[J]. SlAM J Math Anal, 1970,1:1-26.
  • 5MEDEIROS L A,MILLA M M. Weak solutions for a nonlinear dispersive equation[J]. J Math Anal Appl, 1977,59(3) : 432-441.
  • 6LI R H,CHEN Z Y,WU W. Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods[M]. New York, Marcel Dekker, 1999.

二级参考文献4

共引文献26

同被引文献23

  • 1由同顺.二维非线性对流-扩散方程的特征-差分解法[J].计算数学,1993,15(4):402-409. 被引量:8
  • 2ZHANG Z Y, LIN J. Dynamics of jovian atmos- pheres with applications of nonlinear singular vector method [ J ]. International Journal for Numerical Methods in Fluids, 2007,55(8) :713-721.
  • 3MU M, ZHANG Z Y. Conditional nonlinear optimal perturbations of a two-dimensional quasi-geostrophic model[J]. Journal of the Atmospheric Sciences, 2006,163 : 1587-1604.
  • 4J Douglas,T F Russell. Numerical methods for con- vection-dominated diffusion problem based on combi- ning the method of characteristics with finite element or finite difference procedures[J]. SIAM Journal on Numerical Analysis, 1982,19 : 871-885.
  • 5WANG P, ZHANG Z Y. Quadratic finite volume element method for the air pollution model[J]. International Journal of Computer Mathematics, 2010, 13:2925-2944.
  • 6J G Blom,J G Verwer. A Comparison of integration methods for atmospheric transport chemistry prob- lems[J].Journal of Computational and Applied Mathematics, 2000,126 : 381-396.
  • 7M A Botchev, J G Verwer. A new approximate ma- trix factorization for implicit time integration in air pollution modelling [J]. Journal of Computational and Applied Mathematics, 2003,157 : 309-327.
  • 8Lise M Frohn, Jesper H. Christensen and Jorgen Brandt. Development of a High-Resolution nested air pollution model [J]. Journal of Computational Phsics, 2002,79 : 68-94.
  • 9王平.一维大气污染模型的二次有限体积元方法[J].商丘师范学院学报,2008,24(9):15-18. 被引量:1
  • 10陈大伟,蔚喜军.一维双曲守恒律的龙格-库塔控制体积间断有限元方法[J].计算物理,2009,26(4):501-509. 被引量:13

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部