期刊文献+

一种基于吉布斯抽样的MUSIC多维参数联合估计算法 被引量:3

New Gibbs sampling multi-parameters joint estimator based on MUSIC method
在线阅读 下载PDF
导出
摘要 将马尔可夫蒙特卡罗(MCMC)方法与多重子空间分类(MUSIC)方法估计相结合,提出一种用于联合估计多个目标的频率、方位和俯仰,基于吉布斯抽样的MUSIC多维参数联合估计新方法。该方法将MUSIC方法的谱函数作为频率、方位和俯仰的联合概率密度函数,采用MCMC吉布斯抽样方法对该联合概率密度函数进行采样。理论分析和仿真实验表明:在目标个数较少时,该方法不仅保持了常规MUSIC方法的高分辨能力。 A new Markov Chain Monte Carlo(MUSIC) multi-parameters joint estimator based on Gibbs sampling (Gibbs-MUSIC) is proposed to jointly estimate the frequency,directions and elevations of multiple sources. The method regards the power of MUSIC spectrum function as target distribution up to a constant of proportionality, and uses Gibbs sample, one of the most popular MCMC technique, to sample from it. Theoretical analysis and simulations demonstrate that the new method not only possesses the performance of high-resolution in conventional MUSIC method but also provides a less computation and storage costs than that of conventional MUSIC method under the condition where the number of signal sources is small.
作者 刘景森 金勇
出处 《传感器与微系统》 CSCD 北大核心 2008年第6期62-65,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(60572098) 国家"863"计划资助项目(2007AA01Z478) 河南省自然科学基金资助项目(0511014300)
关键词 马尔可夫蒙特卡罗方法 吉布斯抽样 多重子空间分类方法 联合估计 Markov Chain Monte Carlo(MCMC) method Gibbs sample MUSIC method joint estimateion
  • 相关文献

参考文献9

  • 1冯西安,黄建国.水下目标宽带高分辨方位估计方法的性能研究[J].系统仿真学报,2005,17(10):2352-2354. 被引量:7
  • 2Schmidt R. Multiple emitter location and signal parameter estimation[ J]. IEEE Transaction on Antennas and Propagation, 1986, 34 (3) :276 -280.
  • 3Larocque J R, Reilly J P. Reversible jump MCMC for joint detection and estimation of sou/ces in colored noise[J]. IEEE Transaction on Signal Processing,2002,50(2 ) :231 -240.
  • 4Djuric P M, Huang Yufei, Ghirmai T. Perfect sampling: A review and applications to signal processing [ J ]. IEEE Transaction on Signal Processlng,2002,50 (2) :345 -356.
  • 5Guo Qinghua Liao Guisheng.FAST MUSIC SPECTRUM PEAK SEARCH VIA METROPOLIS-HASTINGS SAMPLER[J].Journal of Electronics(China),2005,22(6):599-604. 被引量:5
  • 6Huang Jianguo, Sun Yi, Liu Kewei, et al. A new Gibbs sampling DOA estimator based on Bayesian method [ C ]//Proceedings of 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing ,2003:229 -232.
  • 7Arnold S F. Gibbs sampling in hHandbook of statistics [ M ]. Series edited by Rao C R, New York, Elsevier, 1993:599 -625.
  • 8Casella G,George E I. Explaining the Gibbs sampler[ J]. The American Statistician ,1992,46 (3) :167 -174.
  • 9West M. Approximating posterior distributions by mixtures [ J ]. Journal of the Royal Statistical Society ( Ser. B ), 1997 ( 54 ) : 553 -568.

二级参考文献6

  • 1Hung H, Kaveh M. Focusing Matrices for Coherent Signal-Subspace Processing [J]. IEEE Trans. on ASSP, 1988, 36(8): 1272-1281.
  • 2Hung H, Mao C. Robust Coherent Signal-Subspace Processing for Direction-of-Arrival Estimation of Wideband Sources [A].IEE Proc.Radar, Sonar and Navigation [C]. 1994. 141 (5): 256-262.
  • 3Kaveh M, Barabell A J. The Statistical Performance of the MUSIC and the Minimum-norm Algorithms in Resolving Plane Waves in Noise [J].IEEE Trans. on ASSP, 1986, 34(2): 331-341.
  • 4Xu X L, Buckley K M. Bias and Variance Analysis of MUSIC Location Estimates [A]. IEEE Proc. ASSP [C]. 1990, 332-336.
  • 5Vaccaro R J. The Past, Present, and the Future of Underwater Acoustic Signal Processing [J]. IEEE Signal Processing Magazine, 1998, 15(4):21-51.
  • 6Wang H, Kaveh M. Coherent Signal-Subspace Processing for the Detection and Estimation of Angles of Arrival of Multiple Wide-Band Sources [J]. IEEE Trans. ASSP, 1985, 33(4): 823-831.

共引文献9

同被引文献15

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部