期刊文献+

多传感器数据融合在飞机地面防撞中的应用 被引量:2

Multi-Sensor Data Fusion Application in Aircraft Ground Collision Avoidance
在线阅读 下载PDF
导出
摘要 针对我国目前对于飞机在地面经常发生的相撞或刮蹭方面的研究较少的现实情况,研究用多传感器数据融合的方法实现飞机的地面防撞。根据现有的多传感器数据融合理论,在分析数据融合过程的基础上,建立混合式数据融合模型,结合模糊神经网络方法实现面向目标的数据融合算法。同时,选用毫米波雷达、红外传感器等多类进行地面多目标的身份识别和威胁评估,从理论上验证了多传感器数据融合思想在飞机地面防撞理论中的可行性,为进一步建立飞机地面防撞系统提供理论基础。 Beacause of less research on aircraft ground collision or scratch in our country, multi-sensor data fusion technology is applied to realize the aircraft ground collision avoidance, According to the present multi-sensor data fusion theory, a combinary model is built on the base of data fusion process analyzing, and a data fusion algrithm is realized by neural network. Besides that, ram-wave radar and infrared sensors are taken as examples to be target identification and danger evaluating data source. The theory is verified to be applicable in aircraft ground collision avoidance, and the theory basement for future aircraft ground collision avoidance system is built.
作者 郭晓静
出处 《测控技术》 CSCD 2008年第6期15-17,共3页 Measurement & Control Technology
基金 中国民航大学科研基金资助项目(07KYM01)
关键词 多传感器 数据融合 防撞 神经网络 威胁估计 multi-sensor data fusion collison avoidance neural network danger evaluation
  • 相关文献

参考文献8

二级参考文献39

  • 1ZHOU B, BOSE NK. Multitarget Tracking in Clutter: Fast Algorithms for Data Association[ J]. IEEE Trans on Aerospace and Electronic Systems, 1993, AES-29(2) : 352 - 363.
  • 2PAO LY, FREI CW. A comparison of parallel and sequential implementations of a multisensor muhitarget tracking algorithm[ A]. Proceedings of the American Control Control Conference. Washington,Conference Seattle[ C]. American1995, vol 3. 1683 - 1687.
  • 3PAO LY, FREI CW. A comparison of parallel and sequential implementations of a multisensor multitarget tracking algorithm[ A]. Proceedings of the American ControlControl Conference. Washington,Conference Seattle[ C]. American1995, vol 3. 1683 - 1687.
  • 4JANSSON J, JOHANSSON J. Decision Making for Collision Avoidance System [C] // Proc of 2002 Society of Automotive Engineers.Pennsylvania: World Headquarters, 2002: 2002 - 01 - 0403.
  • 5MAURER M,BEHRINGER R, THOMANEKF, et al. Acompactvision system for road vehicle guidance [C]//Proc of the 13th Int Conf on Pattern Recognition. Vienna, Austria: Technical University of Vienna, 1996:313 - 317.
  • 6POMERLEAU D, JOCHEM T. Image processor drives across America [J/OL]. Photonics Spectra, 1996,30(4 ): 80 - 85. http://www. ri.cmu. edu/pubs/pub-617. html.
  • 7POMERLEAU D, JOCHEM T. Rapidly adapting machine vision for automated vehicle steering [ J ]. IEEE Expert, 1996,11 ( 2 ): 19 - 27.
  • 8BATAVIA P H. Driver-adaptive lane departure warning systems [D]. Robotics Institute: Carnegie Mellon University, 1999.
  • 9BERTOZZI M, BROGGI A. GOLD: A parallel real-time stero vision system for generic obstacle and land detection [ J ]. IEEE Trans on Image Processing, 1998,7 ( 1 ) :82 - 81.
  • 10BERTOZZI M,BROGGI A,FASCIOLI A.ARGO and the Millemigliain automatic tour [ J]. IEEE Intelligent System, 1999, 14( 1 ): 55 -64.

共引文献61

同被引文献24

  • 1王斌,刘昭度,何玮,佀海,张景波.车用测距雷达研究进展[J].传感器与微系统,2006,25(3):7-9. 被引量:29
  • 2田穆.FAA继续推进机场地面安全技术[J].国际航空,2006(3):31-32. 被引量:1
  • 3庄严,战洪斌,王伟,王珂.基于加权颜色直方图和粒子滤波的彩色物体跟踪[J].控制与决策,2006,21(8):868-872. 被引量:20
  • 4Katja N E, Esther K, Luc V G. An adaptive color-based particle filter[J]. linage and Vision Computing, 2002, 21 (1) : 99-110.
  • 5Perez P, Hue C, Verrnaak J, et al. Color-based probabi- listic traeking[C] // Proceedings of the European Confer- ence on Computer Vision. 2002:661-675.
  • 6Isard M, Blake A. CONDENSATION--conditional densi- ty propagation for visual tracking [J]. International Jour- nal on Computer Vision, 1998, 29(1): 5-28.
  • 7Yogesh R, Namrata V, Allen T, et al. Tracking defor- ming objects using particle filtering for geometric active contours[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8):1470-1475.
  • 8Shen C, Anton V d H, Dick A. Probabilistic multiple cue integration for particle filter based tracking[C]//Proceed- ings of Digital Image Computing: Techniques and Applica- tions. 2003, 1: 399-408.
  • 9Timo O, Matti P, David H. A comparative study of tex- ture measures with classification based on featured distri- butions [J].Pattern Recognition, 1996, 29(1) :51-59.
  • 10Timo O, Matti P, Top M. Multiresolution gray scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部