摘要
基于新型稳定性分析技术及线性矩阵不等式方法,研究了含有参数不确定性的线性多时滞系统的鲁棒指数镇定问题.首先,对不含参数的不确定性时滞系统设计无记忆状态反馈控制器,给出了在该控制器作用下,闭环系统指数稳定的线性矩阵不等式形式的充分条件;然后,将其推广到含有范数有界参数不确定性的时滞及多时滞线性不确定系统,得到了保证系统鲁棒指数稳定的充分条件,并提供了指数衰减度及衰减因子的估计方法.所给出的判据避免了现有文献中对时变时滞导数小于1的要求,比已有的结果具有更少的保守性,数值例子验证了本方法的有效性.
On the basis of the new stability analysis technology and linear matrix inequalities (LMI) method, robust exponential stabilization problems for linear systems with multiple time-delays and parametric uncertainties were considered. Firstly, memory-less state feedback controller was designed for time-delay system without parametric uncertainties and a linear matrix inequalities (LMI)-formed sufficient condition for exponential stability of the closed-loop system is given. Then this result is extended to the time-delay systems with a single time-delay and multiple time-delay, and sufficient conditions for robust exponential stability are also obtained. In addition, estimates for decay rate and decay coefficient are also provided. These sufficient conditions don't require that the derivative of delay is less than 1, and are less conservative than those proposed in previous literature. Numerical examples demonstrated the validity of the approach proposed in this paper.
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2008年第6期50-53,共4页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
中国博士后科学基金资助项目(20060390725)
重庆市自然科学基金资助项目(CSTC2007BB2447,KJ080514)
关键词
多时滞系统
不确定性
无记忆状态反馈
鲁棒指数镇定
线性矩阵不等式
multiple time-delay system
uncertainties
memory-less state feedback
robust exponential stabilization
linear matrix inequalitie