期刊文献+

螺栓-法兰连接结构非线性优化设计方法研究综述 被引量:14

Study on nonlinear optimization design for bolted flanged connection
在线阅读 下载PDF
导出
摘要 螺栓-法兰连接是应用于航空航天、核能等领域的管道主要连接形式。工程上迫切希望获得此类结构的最优化设计,以实现系统性能最佳化。针对这种连接结构的优化设计实际包含接触问题和优化问题两部分的内容,是非线性因素的耦合以及优化设计层层迭代的过程。综述了小变形弹性接触问题中的有限元法及其在工程中的应用,针对螺栓-法兰中优化设计中关心的花瓣的优化,同时还简述了拓扑优化设计方面的研究进展。最后对今后的研究方向和研究的重点作了展望。 Bolted flanged connection is the primary connection form in aeronautical engineering, pipe and nuclear energy fields. The engineering is eager to obtain the optimum structures in order to achieve the best system performance. The problem includes contact and optimization. In fact, it is a process of nonlinear coupling and optimization design. The progress of FEM for contact problems as well as engineering applications is summarized in the paper, particularly including the small deformation and elastic contact problem. At the same time, the topology optimization design is summarized, particularly including petal. In the end, a view for continuing study of research way and keystone in future is forecast .
出处 《强度与环境》 2008年第3期7-13,共7页 Structure & Environment Engineering
基金 国家自然基金资助(A06-10676026)
关键词 接触 有限元法 数值算法 拓扑优化 contact FEM numerical arithmetic topology optimization
  • 相关文献

参考文献54

  • 1M Abid, et al. A parametric study of metal-to-metal contact flanges with optimized geometry for safe stress and no-leak conditions [J]. International Journal of Pressure Vessels and Piping. 2004(81): 67-74.
  • 2G M L Gladwell,著,范天佑译.经典弹性理论的接触问题[M].北京理工大学出版社,1991.
  • 3Parson B, Wilson E A. A method for determining the surface contact stresses resulting from interference fits[J]. ASME J Engng for Industry, 1970: 208-218.
  • 4Chan S K, Tuba I S. A finite element method for contact problem of solid bodies-part I[R]. Theory and Validation .Int Meth Sci. 1971 (13): 615-625.
  • 5Ohte S. Finite element analysis of elastic contact problem [J]. Bull JSME. 1973(16): 797-804.
  • 6Tsuta T, Yamaji S. Finite element analysis of contact problem [J]. Theory and Practice in Finite Element Structural Analysis, Japan, University of Tokyo Press, 1973
  • 7Okamoto N, Nakazawa M. Finite element incremental contact analysis with various frictional conditions [J]. Int J Num Meth Engng.1979 (14): 337-357.
  • 8Campos L T, Oden J T, Kikuchi N. A numerical analysis of a class of contact problem with friction in elastostatica[J]. Computer Meth Appl Mech and Engng. 1982 (34): 821-846.
  • 9Fredriksson B. Finite element solution of surface nonlinearities in structural mechanics with special emphasis to contact and fracture mechanics problem[J]. Computers and Structure. 1976, 6:281-290.
  • 10郭仲衡.弹性接触问题有限元分析的“广义子结构法”[J].中国科学,1980,9:838-846.

二级参考文献70

  • 1程耿东,顾元宪,王健.我国机械优化研究与应用的综述和展望[J].机械强度,1995,17(2):68-74. 被引量:41
  • 2黄克勇 黄永刚.固体本构关系[M].北京:清华大学出版社,1999..
  • 3[1]Bisbos C D. A Cholesky condensation method for unilateral contact problems[J]. Solid Mechanics Archives,1985,11(1):1-23.
  • 4[2]Panagiotopoulos P D. A nonlinear programming approach to the unilateral contact and friction boundary value problem in the theory of elasticity[J]. Ingenieur Archiv,1974,44(3):421-432.
  • 5[3]Kikuchi N, Oden J T. Contact Problems in Elasticity: A Study of Variational Inequalities and FEM[M]. Philadelphia:SIAM,1988.
  • 6[4]Zhong W X, Sun S M. A parametric quadratic programming approach to elastic contact problems with friction[J]. Comput & Structures,1989,32(1):37-43.
  • 7[5]Xuan Z C, Li X S, Sui Y K. Surrogate dual problem of quadratic programming and the algorithm[J]. Chinese J Numer Math Appl,1999,21(1):45-53.
  • 8[6]Rosen J B, Suzuki S. Construction of nonlinear programming test problems[J]. Comm of the ACM,1965,8(2):113.
  • 9[7]Simunovic S, Saigal S . A linear programming formulation for incremental contact analysis[J]. Internat J Numer Methods Engrg,1995,38(16):2703-2725.
  • 10[4]Bendsoe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method[J]. Comput Methods Appl Mech Engrg, 1988,71: 197-224.

共引文献210

同被引文献78

引证文献14

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部