期刊文献+

一种自适应邻域选择算法 被引量:3

An Algorithm for Adaptive Neighborhood Selection
原文传递
导出
摘要 提出一种自适应邻域选择算法,适用于所有基于局部的流形学习算法.该算法能够根据数据集分布的不同密度和曲率选择合适的邻域大小,同时结合局部多维尺度变换(LMDS),在合适的邻域下直接降维并通过全局整合得到数据集的低维坐标.实验表明该算法可较好恢复较复杂数据集的低维几何结构. An automatic neighborhood selection algorithm for manifold learning is proposed. It is suitable for all the manifold learning algorithms which need select the neighbors to get locally linear information. Through the algorithm, the proper neighborhood size of a dataset can be determined even under different data density and curvature. By adopting this method, the locally multidimensional scaling can reduce the dimensionality of data based on the suitable neighborhood, and the low-dimensional representations of the data can be get through global alignment. The experiment shows the algorithm can recover the sophisticated geometry structure of the data sets.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第3期406-409,共4页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60495019) 教育部博士点专项基金(No.20060247039)资助项目
关键词 流形学习 非线性降维 局部多维尺度变换(LMDS) Manifold Learning, Nonlinear Dimensionality Reduction, Locally Multidimensional Scaling (LMDS)
  • 相关文献

参考文献13

  • 1Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000, 290(5500) : 2319 -2323
  • 2de Silva V, Tenenbaum J B. Global versus Local Methods in Nonlinear Dimensionality Reduction//Becker S, Thrun S, Obermayer K, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2002, 15:705-712
  • 3Rowels S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000, 290(5500) : 2323 - 2326
  • 4Saul L K, Roweis S T. Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds. Journal of Machine Learning Research, 2003, 4(6) : 119 - 155
  • 5Zhang Zhenyue, Zha Hongyuan. Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment. SIAM Journal of Scientific Computing, 2005, 26( 1 ) : 313 - 338
  • 6Zhao Deli. Formulating LLE Using Alignment Technique. Pattern Recognition, 2006, 39( 11 ): 2233 -2235
  • 7Wu Yiming, Chan K L. An Extended ISOMAP Algorithm for Learning Multi-Class Manifold//Proc of the 3rd International Conference on Machine Learning and Cybernetics. Shanghai, China, 2004, Ⅵ: 3429 - 3433
  • 8杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 9Balasubramanian M, Schwartz E L, Tenenbaum J B, et al. The ISOMAP Algorithm and Topological Stability. Science, 2002, 295 (5552) : 7
  • 10Yang Li. Locally Multidimensional Scaling for Nonlinear Dimensionality Reduction// Proc of the 18th International Conference on Pattern Recognition. Hongkong, China, 2006, Ⅳ : 202 - 205

二级参考文献57

  • 1张振跃,查宏远.线性低秩逼近与非线性降维[J].中国科学(A辑),2005,35(3):273-285. 被引量:8
  • 2杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 3Seung HS, Lee DD. The manifold ways of perception. Science, 2000,290(5500):2268-2269.
  • 4Donoho DL, Grimes C. Hessian Eigenmaps: New locally linear embedding techniques for high-dimensional data. Proc. of the National Academy of Sciences of the United States of American, 2003,100(10):5591-5596.
  • 5.[EB/OL].http://www.cse.msu.edu/~lawhiu/manifold/,.
  • 6Tenenbaum J, Silva VD, Langford J. A global geometric framework for nonlinear dimensionality reduction. Science, 2000,290(5500):2319-2323.
  • 7Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000290(5500):2323-2326.
  • 8Belkin M, Niyogi P. Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003,15(6):1373-1396.
  • 9Min WL, Lu L, He XF. Locality pursuit embedding. Pattern Recognition, 2004,37(4):781-788.
  • 10Zhang ZY, Zha HY. Principal manifolds and nonlinear dimensionalty reduction via tangent space alignment. SIAM Journal of Scientific Computing. 2004,26(1):313-338.

共引文献107

同被引文献37

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部