期刊文献+

标记样本的Adaboost算法 被引量:2

An Adaboost Algorithm with Sample Marked
在线阅读 下载PDF
导出
摘要 提升(Boost)学习算法中,可以划分为多数提升和Adaboost两类。Adaboost是目前比较流行的分类方法,目前在多媒体和计算机视觉领域得到了广泛的应用。文中介绍了Adaboost方法的原理与方法,通过在提升过程中对训练集中部分样本的标记,提出了一种新的Adaboost算法的训练方法,并且用实验数据对该方法进行验证。该方法通过对前一轮提升后权值较小的那部分样本作标记,增加了后一轮提升抽样的有效容量,从而使算法中的分类器能够更快速地关注那些很难分类的样本。 In multimedia and computer fields,Adahoost algorithm is the popular boost learning method for classification. It can be divided into two series:Boost by majority and Adaboost. The algorithm of Adaboost method was described in detail, A new training method has been raised through the marks on the part of training samples and proved by experiment. The former' s effective capacity of sample has been improved by the new algorithm, which is made on the former samples with less weights. Thus, the classification algorithm can focus on those samples faster which are hard to classify.
出处 《计算机技术与发展》 2008年第7期109-111,115,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(60475017) 安徽省高等学校自然科学研究项目(2006kj055B)
关键词 ADABOOST算法 提升 抽样 有效容量 Adaboost algorithm boost sample effective capacity
  • 相关文献

参考文献5

二级参考文献23

  • 1丁玉薇.被动声纳目标识别技术的现状与发展[J].声学技术,2004,23(4):253-257. 被引量:34
  • 2MACLIN R. Boosting classifiers regionally[ A]. Proceedings of the Fifteenth National Conference on Artificial Intelligence[ C]. Madison, WI, 1998.700 -705.
  • 3BRIEMGJ, BENEDIKTSSONTA, SVEINSSONJR. Boosting, Bagging,and Consensus Based Classification of Multisouree Remote Sensing Data[ A]. Proceedings of the Second International Workshop on Multiple Classifier Systems table of contents[ C], 2001. 279 - 288.
  • 4SCHAPIRE RE. The boosting approach to machine learning an overview[ Z]. MSRI Workshop on Nonlinear Estimation and Classification[C]. Berkeley, CA, Mar2001.
  • 5RUTA D, GABRYS B. Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting[A]. Proceedings of the MCS "2001 Workshop[ C]. Cambridge, UK, 2001.399-408.
  • 6FREUND Y, SCHAPIRE RE. A decision-theoretic generali-zation of online learning and an application to boosting[ J].Journal of computer and system sciences, 1997, 55(1) : 119- 139.
  • 7MACLIN R. Boosting classifiers regionally[ A]. Proceedings of the Fifteenth National Conference on Artificial Intelligence[ C]. Madison, WI., 1998.700 -705.
  • 8RUTA D, GABRYS B. Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting[A]. Proceedings of the MCS 2001 Workshop[ C]. Cambridge, UK, 2001.399-408.
  • 9FREUND Y, SCHAP1RE RE. A decision-theoretic generalization of on-line learning and an application to boosting[ J].Journal of computer and system sciences, 1997, 55(1) : 119- 139.
  • 10LEBANON G, LAFFERTY J. Boosting and maximum likelihood for exponential models[ A]. Advances in Neural Information Processing Systems[ C], 2001.

共引文献21

同被引文献28

引证文献2

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部