期刊文献+

基于数学形态学的机场跑道快速识别方法 被引量:1

A Fast Method of Airport Runway Detection Based on Mathematical Morphology
在线阅读 下载PDF
导出
摘要 提出了一种航拍机场跑道的快速识别方法。采用二维最大熵阈值方法分割出目标区域,利用Kirsch算子提取主要物体的边界轮廓,然后基于数学形态学的开、闭运算消减云层等物对目标边界的干扰,断开细线连接,削弱狭窄的部分,再应用细化剪枝剔除毛刺和各段孤立的短骨架线;利用Hough变换搜索出平行直线对作为机场跑道的候选区域;利用跑道区域的灰度特征对候选区域进行验证,去除虚假目标。实验结果表明:该方法具有较高的目标识别率和计算实时性,抗噪性强,能够消除背景中诸如云朵等物体的干扰。 Presented a fast method to detect airport in aerial image. First, the two-dimensional maximum entropy threshold rnethod was adopted to segment the object area, and Kirsch operator was used to detect the main edges of the objects in the image. Then the disturbance of some background objects such as cloud was eliminated. Also thread linking and the narrow part were disconnected and weakened accordingly, which were based on the mathematical morphology of the opening and closing operation. Further the burr and every 'isolated short skeleton were removed by thinning and pruning. And then, the parallel straight lines detected by Hough transform were ennsidered as candidate regions. At last, the candidate regions were verified by the gray characters of runway area so as to wipe off the false targets. Experiments indicate that the method has a high recognition rate and calculation of real- time, and it is robust to the background interference.
出处 《计算机技术与发展》 2008年第7期193-196,共4页 Computer Technology and Development
基金 重庆自然科学基金项目(CSTC 2005BB2207)
关键词 二维最大熵阈值 数学形态学 细化剪枝 机场检测 2 - D maximum entropy threshold mathematical morphology thinning and pruning airport detection
  • 相关文献

参考文献4

二级参考文献24

  • 1陈洪波,王强,徐晓蓉.用于线段特征提取的改进Hough变换[J].计算机工程与应用,2004,40(21):75-78. 被引量:14
  • 2丁益洪,平西建,胡敏.基于随机Hough变换的深度图像分割[J].计算机辅助设计与图形学学报,2005,17(5):902-907. 被引量:13
  • 3清宏计算机工作室.C^++ Builder多媒体开发[M].北京:机械工业出版社,2001..
  • 4[1]Halem N. Contextual Image Understanding of Airport Photographs. SPIE, 1981, 1 521~1 532
  • 5[2]Huertas A. Detect Runways in Complex Airport Scenes. Computer Vision, Graphics and Image Processing, 1983, 24(2): 43~57
  • 6[3]Illingworth J, Kittker J. A Survey of the Hough Transform. Computer Vision, Graphics and Image Processing, 1988, 44(1): 87~116
  • 7夏良正.数字图像处理[M].南京:东南大学出版社,2001..
  • 8Illingworth J,Kittler J.A survey of the Hough transform[J].Computer Vision,Graphics,and Image Processing,1988,44(1):87-116
  • 9Kalviainen H,Hirvonen P,Xu L,et al.Probabilistic and nonprobabilistic Hough transforms:overview and comparisons[J].Image and Vision Computing,1995,13(4):239-252
  • 10Lam W,Lam L,Yuen K,et al.An analysis on quantizing the Hough space[J].Pattern Recognition Letters,1994,15(10):1127-1135

共引文献79

同被引文献24

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部