摘要
目的:复积分的计算.方法:利用复变函数的基本理论证明了柯西-古萨定理、柯西积分公式和解析函数的高阶导数公式都是留数定理的特殊情况.结果:凡是能用柯西-古萨定理、柯西积分公式和解析函数的高阶导数公式计算的复积分都能用留数定理来计算.结论:此研究对应用具有重要意义.
Objective: To calculate the complex integral. Methods: To employ the basic theory in complex functions. Results: Cauchy-Goursat theorem, Cauchy integral formula, and the higher derivative formula of the analytic function are all the special case of the residue theorem. Those complex integrals, which can be calculated by Cauchy-Goursat theorem, Cauchy integral formula, and the higher derivative formula of the analytic function, can all be calculated by the residue theorem. Conclusion: The research plays a significant role in application.
出处
《黄冈师范学院学报》
2008年第3期15-17,共3页
Journal of Huanggang Normal University
关键词
留数定理
特殊情形
注记
证明
residue theorem
special cases
note
prove