期刊文献+

中文博客主题情感句自动抽取研究 被引量:3

Study of topic sentiment sentences auto-extraction in Chinese blogs
在线阅读 下载PDF
导出
摘要 博客作为一种大众化的信息及文化载体被越来越多的人所接受,博客信息的情感分析也逐渐成为了信息挖掘领域的热点。目前,在研究情感分析时,多是通过计算词汇的倾向性来完成的。由于并不是所有的带有情感色彩的词汇都是主题相关的,因此,以词为粒度的情感分析存在一定的缺陷。为了解决这一问题,试图从句子层面进行分析,主要研究了与之相关的主题情感句的自动提取问题。为了有效地提取主题相关情感句,设计了一个新颖的基于二元切分的提取算法来获取主题词,然后利用TFIDF算法获取更多的次要主题词,并利用这些主题词重组了那些包含主题词的原始句。因此,如果主题情感句存在的话,那么它一定在这些重组的主题句集合中,只要对该重组句集合进行分析、提取,便能得到主题情感句。最后,利用CRFs将主题句提取问题有效转化为了中文chunking问题,并在抽取实验中取得了很好的结果。 In the field of Chinese blog sentiment analysis,previous researchers put most energy on the polarity analysis of word, but not all the word analyzed is relative with the topic,and word-level granularity for sentiment analysis is too small.We try to use sentiment sentences,a sentence-level model,for sentiment analysis.In this paper,it only focuses on topic sentiment sentences auto-extraction.In order to extracting topic sentiment sentences,it designs a novel Bi-segment method to extract the main topic words,and uses TFIDF to extract more topic words.With these words,it recombines original sentences,which contain the topic words.So as long as topic sentiment sentences exist,they must in the set of recombined sentences.Then,based on the analysis of Chinese blogs,it converts the problem of extraction into Chinese chunking by CRFs and has a good performance in extraction experiment.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第20期165-168,221,共5页 Computer Engineering and Applications
关键词 中文博客 情感分析 CRFS Chinese blogs sentiment analysis Conditional Random Fields(CRFs )
  • 相关文献

参考文献15

  • 1Iadh Ounis,Maarten de Rijke,Craig Macdonald,et al.Overview of the TREC-2006 blog track.
  • 2Amanda Lenhart,Susannah Fox.Bloggers:a portrait of the lnternet's new storytellers[C]//Pew Internet & American Life Project,July,2006.
  • 3Hatzivassiloglou V,McKeown K R.Predicting the semantic orientation of adjectives[C]//Proceedings of ACL-97,35th Annual Meeting of the Association for Computational Linguistics,Madrid,ES,1997: 174-181.
  • 4http://www.clairvoyancecorp.com/research/workshops/AAAI -EAAT - 2004/home.html.
  • 5Casey Whitelaw,Navendu Garg, Shlomo Argamon.Using appraisal groups for sentiment analysis.CIKM,2005:625-631.
  • 6Hatzivassiloglou,Vasileios, Wiebe, Janyce.Effects of adjective orientation and gradability on sentence subjectivity [C]//International Conference on Computational Linguistics(COLING-2000).
  • 7朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:328
  • 8金珠,林鸿飞,赵晶.基于HowNet的话题跟踪及倾向性分类研究[J].情报学报,2005,24(5):555-561. 被引量:21
  • 9李江波,周强,陈祖舜.汉语词典的快速查询算法研究[J].中文信息学报,2006,20(5):31-39. 被引量:25
  • 10Salton G, Wong A,Yang C S.A vector space model for automatic indexing[J].Communication of ACM, 1975,18 ( 11 ) :613-620.

二级参考文献26

  • 1王秀坤,李政,简幼良,刘剑.基于Hash方法的机器翻译词典的组织与构造[J].大连理工大学学报,1996,36(3):352-355. 被引量:12
  • 2董振东 董强.[EB/OL].知网.http://www.keenage.com,.
  • 3J. Allan, J. Carbonell, G.Doddington, J. P. Yamron, and Y.Yang. Topic Detection and Tracking Pilot Study: Final Report. Proceedings of Broadcast News Transcription and Understanding Workshop, Lansdowne, Virginia, February 1998.
  • 4C.Wayne. Muhilingual Topic Detection and Tracking: Successful Research Enabled by Corpora and Evaluation. Language Resources and Evaluation Conference (LREC), 2000.1487 - 1494.
  • 5Liang Ma, Qunxiu Chen, Shaoping Ma, and Min Zhang, Lianhong Cai. Incremental Learning for Profile Training in Adaptive Document Filtering. In Proceedings of the 11 th Text REtrieval Conference(TREC-11), 2002.
  • 6Ying-Ju Chen and Hsin-His Chen. NLP and IR Approaches to Monolingual and Multilingual Link Detection. In Proceedings of the 19th International Conference on Computational Linguistics( COLING 2002).
  • 7A. Martin, G. Doddington, T. Kamm, M. Ordowski, M.Przybocki. The DET Curve in Assessment of Detection Task Performance. EuroSpeech 1997 Proceedings Volume 4, 1997.
  • 8Yiming Yang, Tom Auh, Thomas Pierce, Charles W. Lattimer. Improving Text Categorization Methods for Event Tracking.In Proceedings of the 23rd International Conference on Research and Development in Information Retrieval (SIGIR2000), 2000. 65 - 72.
  • 9Vasileios Hatzivassiloglou, Kathleen R. McKeown. Predicting the semantic orientation of adjectives[A]. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C], 1997:174- 181.
  • 10Turney, Peter, Littman Michael. Measuring praise and criticism: Inference of semantic orientation from association[J]. ACM Transactions on Information Systems, 2003, 21(4): 315- 346.

共引文献368

同被引文献38

  • 1杨频,李涛,赵奎.一种网络舆情的定量分析方法[J].计算机应用研究,2009,26(3):1066-1068. 被引量:19
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:328
  • 3张云涛,龚玲,王永成.基于综合方法的文本主题句的自动抽取[J].上海交通大学学报,2006,40(5):771-774. 被引量:16
  • 4廉站俊,吕学强,张玉杰,施水才.基于句子相似度计算的信息抽取[J].现代图书情报技术,2007(6):38-41. 被引量:4
  • 5Salton G,Allan J.Automatic Text Decomposition and Structuring[J].Information Processing and Management,1996,32 (2):127-138.
  • 6Salton G,Singhal A,Buckley C,et al.Automatic Text Decomposition Using Text Segments and Text Themes[C].In:Proceedings of the Seventh ACM Conference on Hypertext.NY:ACM New York,1996.53-65.
  • 7Mitra M,Singhal A,Buckley C.Automatic Text Summarization by Paragraph Extraction[C].In:Proceedings of ACL' 97/ACL' 97.Worksho Pon Intelligent Scaleable Text Summarization,Madrid.NJ:Assoc.Compnt.Linguistics,1997:39-46.
  • 8Chatterjee N.A Statistical Approach for Similarity Measurement between Sentences for EBMT[C].In:Proceedings of Symposium on Translation Support Systems STRANS-2001,2001.
  • 9Chen K,Fan XZ,Liu J,et al.A New Approach to Compute the Semantic Similarity of Chinese Question Sentence[C].In:Proceedings of the Sixth International Conference on Machine Learning and Cybernetics(ICMLC 2007),Hong Kong.NJ:IEEE,2007:1830-1835.
  • 10Li Y,McLean D,Bandar Z A,et al.Sentence Similarity Based on Semantic Nets and Corpus Statistics[J].IEEE transactions on knowledge and data engineering,2006,18(8):1138-1150.

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部