期刊文献+

一种新的求解非线性方程组的混合量子遗传算法 被引量:1

A New Hybrid Quantum Genetic Algorithm For Solving Nonlinear Equations
在线阅读 下载PDF
导出
摘要 针对传统非线性方程组的解法对初始值敏感、收敛性差、精度低等问题,提出一种求解非线性方程组的混合量子遗传算法。该算法综合考虑了量子遗传算法和拟牛顿法的优点,充分发挥了前者的群体搜索和全局收敛性,并有效克服了后者的初始点敏感问题。数值模拟试验表明,该算法具有很高的精确性和收敛性,是求解非线性方程组的一种有效算法。 Aiming at the problems of the classical algorithms for solving the nonlinear equations such as high sensitivity to the initial value,poor convergence and low precision , a hybrid quantum genetic algorithm for solving nonlinear equations is proposed. The algorithm combined the advantages of quantum genetic algorithm and quasi--Newton method. It sufficiently exerted the advantages of the former such as group search, global convergence and effectively overcome the shortcoming of the latter such as sensitivity to the initial value. Numerical simulation experiments show that this algorithm has high precision and convergence characteristics, and is a reliable approach in solving the nonlinear equations.
作者 杜娟 刘志刚
出处 《微计算机应用》 2008年第7期1-5,共5页 Microcomputer Applications
关键词 非线性方程组 混合量子遗传算法 拟牛顿迭代法 进化计算 nonhnear equations, Hybrid Quantum Genetic Algorithm, quasi--Newton method, function optimization, evolutionary com- putation
  • 相关文献

参考文献7

二级参考文献28

  • 1梁化楼,戴贵亮.人工神经网络与遗传算法的结合:进展及展望[J].电子学报,1995,23(10):194-200. 被引量:71
  • 2Holland J H. Adaptation in natural and artificial systems[M]. MI:University of Michiagn Press,1975.
  • 3Chng E J.Lippmann R P. Using genetic algorithms to improve pattern classification performance, Advance in Neural information Processing 3, San Matero, 1991. 797-803
  • 4Suzuki K, Kakaza Y. An approach to the analysis of the basins of the associative memory model using genetic algorithms .Proc. of4th Conf. on GA, San Meteo,1991. 539-546
  • 5陈国良,王煦法,庄镇泉.遗传算法以及应用【M】.北京:人民邮电出版社,1996.
  • 6HIRAFUJI M,HAGAN S.A global optimization algorithm based on the process of evolution in complex biological system[J].Computers and Electronics in Agriculture,2000,29:125-134.
  • 7GRIGORENKO I,GARCIA M E.Calculation of the partition function using quantum genetic algorithms[J].Physica A,2002,313:463-470.
  • 8RAMOS R V.Numerical algorithms for use in quantum information[J].Journal of Computational Physics,2003,192:95-104.
  • 9SAHIN M,TOMAK M.The self-consistent calculation of a spherical quantum dot A quantum genetic algorithm study[J].Physica E,2005,28:247-256.
  • 10RAZ D,SHAVITT Y.Optimal partition of QoS requirements with discrete cost functions[J].IEEE Journal on Selected Areas in Communications,2000,18:2593-2602.

共引文献91

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部