期刊文献+

基于PNN的退化交通标志图像的识别算法研究 被引量:10

Identification of Degraded Traffic Sign Symbols Using PNN
在线阅读 下载PDF
导出
摘要 为了识别退化的交通标志图像,该文采用一种新的特征提取算法。该算法在处理图像退化问题时,采用模糊-仿射联合不变矩直接提取图像的特征,从而避免了需要较大计算量的图像复原处理过程。针对各阶模糊-仿射联合不变矩数量级差异较大问题,提出一种数量级标准化算法。在深入分析PNN与K-means聚类算法的基础上,提出采用全局K-均值算法优化设计概率神经网络分类器,并将其用于交通标志图像的分类识别。仿真结果表明:模糊-仿射联合不变矩是一种有效的处理退化交通标志图像的方法,所设计的概率神经网络分类器不仅具有精简的结构而且具有较好的推广性能。 A novel feature extraction algorithm is presented for the recognition of traffic sign symbols undergoing degradations in this paper. In order to cope with the degradations, the Combined Blur-Affine Invariants (CBAIs) are adopted to extract the features of traffic sign symbols without any restorations which usually need a great amount of computations. A new magnitude normalization method is proposed for the great differences of magnitude of combined blur-affine invariants. Under the deep discussion of PNN and K-means algorithm, a probabilistic neural network classifier is designed using global K-means algorithm and applied to the classification of degraded traffic signs. The simulation results indicate that CBAIs are efficient for the feature extraction of degraded images, and the designed network is not only parsimonious but also has better generalization performance.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第7期1703-1707,共5页 Journal of Electronics & Information Technology
基金 高等学校博士学科点专项科研基金(20050213010) 国家自然科学基金(60674101)资助课题
关键词 模式识别 概率神经网络 交通标志 模糊-仿射联合不变矩 全局K-均值算法 Pattern recognition Probabilistic Neural Networks (PNN) Traffic sign Combined Blur-AffineInvariants (CBAIs) Global K-means algorithm
  • 相关文献

参考文献16

  • 1De la Escalera A and Salichs M. Road traffic sign detection and classification. IEEE Trans. on Industrial Electronics, 1997, 44(6): 848-859.
  • 2Gavrila D. Multi-feature hierarchical template matching using distance transforms. IEEE 14th International Conference on Pattern Recognition, Brisbane, Australia, 1998: 439-444.
  • 3Miura J, Kanda T, and Shirai Y. An active vision system for real-time traffic sign recognition. Proceedings of IEEE Intelligent Transportation Systems, Dearborn, MI, USA,2000: 52-57.
  • 4Fleyeh H. Shadow and highlight invariant color segmentation algorithm for traffic signs. IEEE Conference on Cybernetics and Intelligent Systems, Bangkok, Thailand, 2006: 1-7.
  • 5Douville P. Real-time classification of traffic signs. Real- Time Imaging, 2000, 6(3): 185-193.
  • 6Nguwi Yok-Yen and Z Kouzani Abbas. Detection and classification of road signs in natural environments. Neural Computing & Applications, 2007, DOI: 10.1007/s00521-007-0120-z.
  • 7Gavrila D. Traffic Sign Recognition Revisited. Proc. of the 21st DAGM Symposium, Bonn, Germany, 1999: 86-93.
  • 8Cyganek B. Circular road signs recognition with affine moment invariants and the probabilistic neural classifier. Lecture Notes in Computer Science 4432, Springer, Berlin,2007: 508-516.
  • 9Suk T and Flusser J. Combined blur and affme moment invariants and their use in pattern recognition. Pattern Recognition, 2003, 36(12): 2895-2907.
  • 10Hu M K. Visual pattern by moment invariants. IEEE IRE Trans. on Information Theory, 1962, 8(1): 179-187.

同被引文献107

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部