期刊文献+

亚碲酸铅玻璃微结构的Raman光谱研究 被引量:2

Raman Spectroscopic Study of Binary PbO-TeO_2 Glasses
在线阅读 下载PDF
导出
摘要 测定了亚碲酸铅玻璃的常温及高温Raman光谱。实验表明随着PbO浓度增大,亚碲酸盐玻璃中的四配位与三配位结构单元之间存在转化关系,体系总体非桥氧数增加。当加入的PbO摩尔浓度增大至50%后,四配位结构单元密度相对较少,这时玻璃结构中主要以三配位结构单元形式存在。同时还测定了40PbO·60TeO2玻璃的升温Raman光谱,观察到四配位结构单元桥氧、四配位结构单元非桥氧以及三配位结构单元非桥氧对称伸缩振动的谱峰由于温度升高引起的结晶化过程导致向高频移动,谱峰变得尖锐,强度增大。熔点后,Raman光谱出现展宽效应,强度降低。在玻璃处于熔化状态下,四配位中的微结构单元会进一步向三配位转化,熔体内部微结构单元含量会相对平衡。 Raman spectra of lead teUurite glasses and their melts were measured. Results show that four coordinate tellurite units convert into three coordinate units with increasing the concentration of PbO, and the number of non-bridging oxygen bonds (NBO) increases accordingly in this system. Three spectral peaks in the high frequency range were assigned to stretching vibration of bridging oxygen in four coordinate tellurite units (Qb), stretching vibration of non-bridging oxygen in four coordinate tellurite units (Onb) and in three coordinate tellurite units (Tnb). The relative density of four coordinate structure units decreases and the three coordinate tellurite units considerably exist in tellurite glasses when the concentration of PbO〉50%. Besides, the Raman frequencies of the three species' peaks become blue-shifted because of the temperature induced crystallization at high temperature, and the peak intensities increase and the peaks sharpen. The peaks merge together and become much broader while the glass is heated above the melting point because of multiple microstructure units coexisting.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2008年第7期1564-1568,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(50334040 40203001 50472104 50334050)资助
关键词 亚碲酸盐玻璃 RAMAN光谱 微结构单元 Tellurite glasses Raman spectra Microstructure units
  • 相关文献

参考文献3

二级参考文献36

  • 1仲维卓,张学华,罗豪甦,华素坤.溶液、熔体中负离子配位多面体生长基元的分布与缔合[J].人工晶体学报,2005,34(2):195-199. 被引量:14
  • 2仇怀利,王爱华,尤静林,陈辉,殷绍唐.BSO晶体生长固/液边界层结构的实时观测研究[J].光谱学与光谱分析,2005,25(4):529-531. 被引量:6
  • 3ZOTOV N, MARINOV M, KONSTANTINOV L. Degree of structural disorder in sodium metasilicate glass: model for Raman spectra[J]. J Non-Cryst Solids, 1996, 197: 179-186.
  • 4ZOTOV N, TIMPEL D, KEPPLER H. Calculation of Raman spectra and vibrational properties of silicate glasses-comparison between Na2Si4O9 and SiO2 glasses[J]. Phys Rev B, 1999, 60(6):6383-6392.
  • 5MYSEN B O, VIRGO D, SCARFE C M. Relations between the anionic structure and viscosity of silicate melt-a Raman spectroscopic study[J]. Am Miner, 1980, 65: 690-702.
  • 6MYSEN B O, FRANTZ J D. Raman spectroscopy of silicate melts at magmatic temperatures: Na2O-SiO2, K2O-SiO2 and Li2O-SiO2 binary compositions in the temperature range 25-1473 ℃[J]. Chem Geol, 1992, 96:321-332.
  • 7McMILLAN P F. Vibrational spectroscopy of silicate liquids and glasses[J]. Chem Geol, 1992, 96:351-373.
  • 8IGUCHI Y. Raman spectroscopic study on the structure of silicate slags[J]. Can Metall Q, 1981, 20:51-72.
  • 9BRAWER A, WHITE B. Raman spectroscopic investigation of the structure of silicate glasses Ⅰ: The binary alkali silicates[J]. J Chem Phys, 1975, 63(6):2421-2432.
  • 10BRAWER A, WHITE B. Raman spectroscopic investigation of the structure of silicate glasses Ⅱ: Raman intensities and structural units in sodium silicate glasses[J]. J Chem Phys,1981, 75(7):3226-3237.

共引文献13

同被引文献37

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部