期刊文献+

基于遗传算法与支持向量机的日流量预测 被引量:6

Daily Flow Forecasting Based on Genetic Algorithm and Support Vector Machine
在线阅读 下载PDF
导出
摘要 提出了采用遗传算法求解支持向量机最优参数的算法,并将其应用于Chickasaw河的日流量预测。为评估由不同时刻的流量、降水量及蒸发量组成的输入向量对模型预测精度的影响,设计了四种模型输入方案,以方差和确定性系数为标准对其进行评价。结果表明,采用前3 d流量、前1 d降水量及蒸发量的方案3预测精度最高。与BP神经网络模型预测结果对比显示,支持向量机模型预测精度较优,可用于水库或水电站的日流量预测。 This paper applied a genetic algorithm (GA) to optimize the parameters of Support vector machine (SVM) for daily flow forecasting in Chickasaw creek at Mobile County. To investigate the impact of variable enabling/disabling of streamflow, rainfall and evapotranspiration on model prediction accuracy, four modelling structures with different input vectors were developed and their performance was evaluated in terms of the mean square error and the coefficient of deter-mination. The results show that the third modelling structure consisting of the past 3 days's treamflow, the past rainfall and evapotranspiration as the inputs is superior to other model structure in performance. Compared with the BP neural network, experimental results show that accuracy of the proposed SVM model is slightly better than the latter in this article and can be used for forecasting the daily flow of reservoir or hydropower plant.
出处 《水电能源科学》 2008年第4期14-17,共4页 Water Resources and Power
基金 国家自然科学基金重点资助项目(50239030)
关键词 水文学 日流量预测 支持向量机 遗传算法 hydrology, daily flow forecasting SVM, GA
  • 相关文献

参考文献9

  • 1Sivakumar B,Jayawardena A W,Fernando T M K G. River Flow Forecasting: Use of Phase-space Reconstruction and Artificial Neural Networks Approaches[J]. Journal of Hydrology, 2002, 265 (1) :225-245
  • 2Chang T C,Chao R J. Application of Back- propagation Networks in Debris Flow Prediction[J]. Engineering Geology, 2006,85 (3) : 270-280
  • 3丁胜祥,董增川,王德智,孙爱军.基于相空间重构和GA-BP网络的径流预测[J].水电能源科学,2007,25(5):40-43. 被引量:5
  • 4李向阳,程春田,林剑艺.基于BP神经网络的贝叶斯概率水文预报模型[J].水利学报,2006,37(3):354-359. 被引量:42
  • 5Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer, 19 9 5.
  • 6Vapnik V N. Statistical Learning Theory[M] . New York: Wiley, 1998.
  • 7Widodo A, Yang B S, Han T. Combination of Inde- pendent Component Analysis and Support Vector Machines for Intelligent Faults Diagnosis of Induction Motors[J] . Expert Systems with Applications, 2007,32(2) : 299-312
  • 8Yang S, Kim S K, Seo K S, et al. Semantic Categorization of Digital Home Photo Using Photographic Region Templates[J] . Information Processing and Management, 2007,43(2) :503-514
  • 9Holland J H. Adaptation in Natural and Artificial Systems[M]. 2nd ed. Cambridge: MIT Press, 1992.

二级参考文献18

  • 1梁忠民,戴昌军.水文频率分析中的多项式正态变换方法研究[J].河海大学学报(自然科学版),2004,32(4):363-366. 被引量:17
  • 2胡铁松,袁鹏,丁晶.人工神经网络在水文水资源中的应用[J].水科学进展,1995,6(1):76-82. 被引量:99
  • 3李荣峰,沈冰,张金凯.基于相空间重构的水文自记忆预测模型[J].水利学报,2006,37(5):583-587. 被引量:23
  • 4Krzysztofowicz R.Bayesian theory of probabilistic forecasting via deterministic hydrologic model[J].Water Resources Research,1999,35(9):2739-2750.
  • 5Krzysztofowicz R,Kelly K S.Hydrologic Uncertainty Processor for Probabilistic River Stage Forecasting[J].Water Resources Research,2000,36(11):3265-3277.
  • 6Krzysztofowicz R,Herr H D.Hydrologic uncertainty processor for probabilistic river stage forecasting:precipitation-dependent model[J].Journal of Hydrology,2001,249(1-4):46-48.
  • 7Krzysztofowicz R.Bayesian system for probabilistic river stage forecasting[J].Journal of Hydrology,2002,268(1-4):16-40.
  • 8Krzysztofowicz R,Maranzano C J.Hydrologic uncertainty processor for probabilistic stage transition forecasting[J].Journal of Hydrology,2004,293(1-4):57-73.
  • 9Marshall L,Nott D,Sharma A.A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling[J].Water Resources Research,2004,40(2).
  • 10Packard N H,Crutchfield J P,Farmer J D,et al.Geometry from a Time Series[J].Phy.Rev.Lett,1980,459:712-716

共引文献45

同被引文献40

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部