期刊文献+

饱和多孔介质大变形分析的一种有限元-有限体积混合方法 被引量:6

An finite element-finite volume hybrid method for large deformation analysis of porous media
在线阅读 下载PDF
导出
摘要 建立了饱和多孔介质大变形分析的一种有限元-有限体积混合计算方法。将饱和多孔介质视为由固体骨架和孔隙水组成的两相体,其基本方程包括动力平衡方程和渗流连续方程。基于u-p假定和更新的Lagrange方法,饱和多孔介质的动力平衡方程在空间域内采用有限元方法进行离散,而渗流连续方程在空间域内则采用有限体积法进行离散。通过两个数值算例,一维有限弹性固结和动力荷载作用下堤坝动力响应的计算,验证了该方法的有效性。 A finite element-finite volume hybrid method for large deformation analysis of porous media is proposed. The porous media is eonsideredas two-phase material with a solid skeleton and a pore fluid phase. Governing equations for the porous media consist of an equilibrium equation and a continuity equation. Based on the u-p formulation and updated Lagrangian method, the equilibrium equation is discretized in the space domain by finite element method, and the continuity equation by finite volume method. Two numerical examples including one-dimensional finite elastic consolidation and dynamic analysis of an embankment are used to illustrate the performance of the proposed method.
作者 邸元 唐小微
出处 《计算力学学报》 EI CAS CSCD 北大核心 2008年第4期483-487,493,共6页 Chinese Journal of Computational Mechanics
基金 国家重点基础研究发展计划(973计划)"温室气体提高石油采收率的资源化利用及地下埋存2006CB705800"项目 国家自然科学基金(50779003) 教育部留学回国人员启动基金资助项目
关键词 多孔介质 有限元 有限体积 大变形 数值模拟 porous media finite element finite volume large deformation numerical simulation
  • 相关文献

参考文献8

  • 1TERZAGHI K. Theoretical Soil Mechanics [M]. New York: John Wiley and Sons, 1943.
  • 2Biot M A. General theory of three dimensional consolidation[J]. Journal of Applied Physics, 1941, 12:155-164.
  • 3BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid [J]. Journal of the Acoustical Society of America, 1956, 28: 168-191.
  • 4ZIENKIEWICZ O C, SHIOMI T. Dynamic behaviour of saturated porous media., the generalized Biot formulation and its numerical solution[J]. International Journal for Numerical and Analytical Meth- ods in Geomechanics, 1984, 8:71-96.
  • 5AKAI K, TAMURA T. Study of two-dimensional consolidation accompanied by an elasto-plastic con stitutive equation[J]. Proceedings of Japan Society of Civil Engineers, 1978, 269: 98-104.
  • 6OKA F, YASHIMA A, SHIBATA T, et al. FEMFDM coupled liquefaction analysis of a porous soil using an elasto-plastic model[J]. Applied Scientific Research, 1994, 52:209-245.
  • 7GIBSON R E, ENGLAND G L, HUSSEY M J L. The theory of one-dimensional consolidation of clays[J].Geotechnique, 1967, 17:261-273.
  • 8OKA F, YASHIMA A, TATEISHI A, et al. A cyclic elasto-plastic constitutive model for sand considering a plastic-strain dependence of the shear modulus [J]. Geotechnique, 1999, 49:661-680.

同被引文献28

  • 1邸元,彭浪,WU Yu-shu,康志江.缝洞型多孔介质中多相流的有限体积法数值模拟[J].计算力学学报,2013,30(S1):144-149. 被引量:9
  • 2陈志海,戴勇,郎兆新.缝洞性碳酸盐岩油藏储渗模式及其开采特征[J].石油勘探与开发,2005,32(3):101-105. 被引量:96
  • 3Yu-Shu Wu,Yuan Di,Zhijiang Kang,Perapon Fakcharoenphol.A multiple-continuum model for simulating single-phase and multiphase flow in naturally fractured vuggy reservoirs[J].Journal of Petroleum Science and Engineering.2011(1)
  • 4Michael G. Edwards.Unstructured, Control-Volume Distributed, Full-Tensor Finite-Volume Schemes with Flow Based Grids[J].Computational Geosciences (-).2002(3-4)
  • 5GB 17741-2005.工程场地地震安全性评价[S]..2005
  • 6Takashi Kiyota,Junichi Koseki,Takeshi Sato.Relationship between limiting shear strain and reduction of shear moduli due to liquefaction in large strain torsional shear tests[J].Soil Dynamics and Earthquake Engineering.2013
  • 7A. Johari,A.R. Khodaparast.Modelling of probability liquefaction based on standard penetration tests using the jointly distributed random variables method[J].Engineering Geology.2013
  • 8Dwi Sarah,Eko Soebowo.Liquefaction due to the 2006 Yogyakarta Earthquake: Field Occurrence and Geotechnical Analysis[J].Procedia Earth and Planetary Science.2013
  • 9G. Vessia,N. Venisti.Liquefaction damage potential for seismic hazard evaluation in urbanized areas[J].Soil Dynamics and Earthquake Engineering.2011(8)
  • 10I. Edelman,K. Wilmanski.Asymptotic analysis of surface waves at vacuum/porous medium and liquid/porous medium interfaces[J].Continuum Mechanics and Thermodynamics.2002(1)

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部