期刊文献+

基于SVM-Mercer的织物悬垂性能评估 被引量:1

Assessment of fabric drape based on SVM-Mercer
在线阅读 下载PDF
导出
摘要 结合纺织品悬垂性能参数的特点,在原有径向基核函数基础上,应用SVM-Mercer核进行新的核函数构造,建立了基于SVM-Mercer的织物悬垂性评估模型.文中对该模型的评估结果进行比较,并分析回归精度ε对评估结果的影响.结果表明:基于SVM-Mercer的织物悬垂性能评估模型可行,其评估精度有了一定程度的提高;ε的选取对评估结果有重要影响,在训练过程中宜首先确定. A new assessment model based on SVM-mercer is constructed by integrated the feature of fabrics drape data and the theory of Radial Basis Function (RBF) kernel. The assessment results on the model are compared with the one of reference [1] and the effect of regression accuracy ε on assessment is analyzed. The experimental resuits indicate that the assessment precision is increased and the assessment model is feasible. Meanwhile regression accuracy ε, determined firstly in the training, is important to the result of assessment.
出处 《天津工业大学学报》 CAS 2008年第4期28-30,38,共4页 Journal of Tiangong University
基金 国家自然科学基金资助项目(60602036) 天津市高等学校科技发展基金资助项目(20051210)
关键词 支持向量机 SVM—Mercer 织物悬垂性 support vector machine SVM-Mercer fabric drape
  • 相关文献

参考文献10

二级参考文献28

  • 1赵丽红.用支持向量机预测织物的悬垂性能[J].纺织学报,2004,25(6):71-73. 被引量:3
  • 2陈辉,沈毅,刘玄木,陈亚威.织物厚度与悬垂性能的回归分析[J].浙江理工大学学报(自然科学版),2005,22(2):109-113. 被引量:10
  • 3[1]S.S.Keerthi,S.K.Shevade,C.Bhattachayya et al.Improvements to Platt's SMO Algorithm for SVM Classifier Design[J].Neural Computation,2001.
  • 4[2]E.Osuna.An Improved Training Algorithm for Support Vector Machines[J].InProc.IEEE Neural Networks in Signal Processing'97,1997.
  • 5[3]T.Joachims.Making Large-scale Support Vector Machine Learning Practical[A].Advances in Kernel Methods-Support Vector Learning,MIT Press,1998.
  • 6[4]John C.Platt.Fast Training of Support Vector Machines Using Sequential Mini mal Optimization[A].Advances in Kernel Method -Support Vector Learning.MIT press,1999.
  • 7[6]Fan Rong-En,Chen Pai-Hsuen,Lin Chih-Jen.Working Set Selection Using Second Order Information for Training Support Vector Machines[J].Journal of Machine Learning Research,2005.
  • 8Alex J. et al. Bernhard Schoelkopf. A Tutorial on Support Vector Regression. NeuroCOLT2 Technical Report Series NC2-TR-1998030,1998.10.
  • 9John C. Platt. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines, Technical Report MSR-TR-98-14,1998,4 - 21.
  • 10HaykinS 叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..

共引文献52

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部