摘要
证明了如果λ1,λ2,λ3是非零实数,并且不同一符号,η是实数,λ1/λ2是无理数,h是给定的正整数,l1,l2,l3是整数,假设GRH成立,那么有无穷多有序素数对p1,p2,p3(pj≡lj(modh),j=1,2,3)使得|λ1p1+λ2p2+λ3p3+η|<(maxpj)-41(log maxpj)4.
In this paper, it is shown that if λ1 ,λ2,λ3 are non-zero real numbers, not all of the same sign, η is real, λ1/λ2 is irrational, h is a given positive integer, l1 ,l2,l3 are integers, and with Generalized Riemann Hypothesis (GRH) assumed, there are infinitely many ordered triples of primes P1 ,P2 ,P3 (Pj≡lj (mod h) ,j= 1,2,3) such that│λ1p+λ2p2+λ3p3+η│〈(max pj)^-4/1(log max pj)^4.
出处
《曲阜师范大学学报(自然科学版)》
CAS
2008年第1期6-10,共5页
Journal of Qufu Normal University(Natural Science)
基金
The National Natural Science Foundation of China(10671056)
关键词
算术数列
素数
丢番图逼近
圆法
arithmetic progression
prime
Diophantine approximation
circle method