期刊文献+

Fuzzy Clustering Validity for Spatia Data 被引量:1

Fuzzy Clustering Validity for Spatia Data
在线阅读 下载PDF
导出
摘要 The validity measurement of fuzzy clustering is a key problem. If clustering is formed, it needs a kind of machine to verify its validity. To make mining more accountable, comprehensible and with a usable spatial pattern, it is necessary to first detect whether the data set has a clustered structure or not before clustering. This paper discusses a detection method for clustered patterns and a fuzzy clustering algorithm, and studies the validity function of the result produced by fuzzy clustering based on two aspects, which reflect the un-certainty of classification during fuzzy partition and spatial location features of spatial data, and proposes a new validity function of fuzzy clustering for spatial data. The experimental result indicates that the new validity function can accurately measure the validity of the results of fuzzy clustering. Especially, for the result of fuzzy clustering of spatial data, it is robust and its classification result is better when compared to other indices. The validity measurement of fuzzy clustering is a key problem. If clustering is formed, it needs a kind of machine to verify its validity. To make mining more accountable, comprehensible and with a usable spatial pattern, it is necessary to first detect whether the data set has a clustered structure or not before clustering. This paper discusses a detection method for clustered patterns and a fuzzy clustering algorithm, and studies the validity function of the result produced by fuzzy clustering based on two aspects, which reflect the uncertainty of classification during fuzzy partition and spatial location features of spatial data, and proposes a new validity function of fuzzy clustering for spatial data. The experimental result indicates that the new validity function can accurately measure the validity of the results of fuzzy clustering. Especially, for the result of fuzzy clustering of spatial data, it is robust and its classification result is better when compared to other indices.
出处 《Geo-Spatial Information Science》 2008年第3期191-196,共6页 地球空间信息科学学报(英文)
关键词 fuzzy clustering spatial data validity UNCERTAINTY 空间数据 模糊聚类 有效性 地球科学
  • 相关文献

同被引文献16

  • 1苗孝可,夏克俭,王秀.精准农业变量施肥智能决策支持系统的研究[J].计算机应用,2004,24(11):153-155. 被引量:17
  • 2严会超,杨海东,肖莉,胡月明,陈飞香,王璐,杨培岭,吴文良.模糊SOFM-GIS空间聚类模型在农用地分等中的应用[J].农业工程学报,2006,22(6):82-86. 被引量:9
  • 3张书慧,马成林,李伟,徐岩.变量施肥对玉米产量及土壤养分影响的试验[J].农业工程学报,2006,22(8):64-67. 被引量:34
  • 4Yang C, Everitt J H, Bradford J M. Comparisons of umibrm and variable rate nitrogen and phosphorus fertilizer applications for grain sorghum[J]. Transactions of the American Society of Agricultural Engineers, 2001, 44(2): 201 --209.
  • 5Mikio UMEDA, Toshikazu KAHO, Michihisa IIDA, Choung Keun LEE. Effect of variable rate fertilizing for paddy field[J]. ASAE2001 Paper No.011111.
  • 6Wittry. David J, Mallarino. Antonio uniform-and variable-rate phosphorus P. Comparison of fertilization for comsoybean rotations[J]. Agronomy Journal, 2004, 96(1): 26--33.
  • 7Koch B, Khosla R, Frasier W M, et al. Economic feasibility of variable-rate nitrogen application utilizing site-specific management zones[J]. A-gronomy Journal, 2004, 96(6): 1572 --1580.
  • 8Mamo M, Malzer G L, Mulla D J, et al. Spatial and temporal variation in economically optimum nitrogen rate for corn[J]. Agronomy Journal, 2003, 95(4): 958 --964.
  • 9Kim D-W, Lee K H, Lee D. Fuzzy cluster validation index based on inter-cluster proximity[J]. Pattern Recognition Letters, 2003, 24(15): 2561--2574.
  • 10李艳,史舟,吴次芳,李洪义,李锋.基于多源数据的盐碱地精确农作管理分区研究[J].农业工程学报,2007,23(8):84-89. 被引量:18

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部