期刊文献+

基于Bhattacharyya系数的由粗到精的核匹配搜索方法 被引量:6

A Coarse-to-Fine Searching Method with Kernel Matching Based on Bhattacharyya Coefficients
原文传递
导出
摘要 均值漂移算法是一种高效的模式匹配算法.在传统的均值漂移方法基础上,本文针对运动范围较大的目标跟踪问题进行研究,提出一种基于 Bhattacharyya 系数的由粗到精的核匹配搜索方法.该算法能够有效利用相似性度量函数 Bhattacharyya 系数在实现对运动目标初始的粗定位情况下,利用均值漂移方法进行迭代求解局部最优值,从而实现目标的精定位,成功实现大范围运动目标的跟踪.实验结果验证该算法在跟踪精度和速度上均优于传统方法. Mean shift is an efficient pattern match algorithm. Aiming at object tracking in large motion area, a mean shift algorithm is proposed based on coarse-to-fine searching with kernel matching. It can efficiently use a similarity measure function to realize the rough location of motion object. Then, the mean shift method is used to obtain the accurate local optimal value by iterative computing, and thus object tracking in large motion area is successfully realized. Experimental results show it has good performance in accuracy and speed compared with traditional algorithm.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第4期514-519,共6页 Pattern Recognition and Artificial Intelligence
基金 国家863计划项目(No.2006AA04Z222) 国家自然科学基金项目(No.60475023) 博士点基金项目(No.20050698032) 中国博士后基金项目(No.20070411127)资助
关键词 视觉 跟踪 均值漂移 BHATTACHARYYA系数 核匹配 Vision, Tracking, Mean Shift, Bhattacharyya Coefficients, Kernel Matching
  • 相关文献

参考文献12

  • 1宋新,沈振康,王平,王鲁平.Mean shift在目标跟踪中的应用[J].系统工程与电子技术,2007,29(9):1405-1409. 被引量:30
  • 2陈东炎,张玘,王艳玲,罗诗途.图像跟踪系统中机动目标预测的实现[J].应用光学,2007,28(1):33-37. 被引量:12
  • 3Naoya O, Takeshi S, Ryosuke K. Automatic Moving Object Detection and Tracking with Mean Shift for Surveillance System// Proc of the International Symposium on Intelligent Signal Processing and Communications. Tottori, Japan, 2006:578-581
  • 4Tao Wenbing, Jin Hai, Zhang Yimin. Color Image Segmentation Based on Mean Shift and Normalized Cuts. IEEE Trans on Systems, Man and Cybernetics, 2007, 37(5) : 1382 - 1389
  • 5Zhu Y, Fujimura K. Driver Face Tracking Using Gaussian Mixture Model//Proc of the IEEE Intelligent Vehicles Symposium. Columbus, USA, 2003:587-592
  • 6Matsumoto Y, Zelinsky A. Real-Time Face Tracking System for Human-Robot Interaction// Proc of the IEEE International Conference on Systems, Man and Cybernetics. Tokyo, Japan, 1999, Ⅱ: 830 - 835
  • 7Seck M, Magrin-Chagnolleau I, Bimbot F. Experiments on Speech Tracking in Audio Documents Using Gaussian Mixture Modeling// Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Salt Lake City, USA, 2001:601 -604
  • 8Secrest B, Doddington G. An Integrated Pitch Tracking Algorithm for Speech Systems// Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Boston, USA, 1983: 1352 - 1355
  • 9Comaniciu D, Meer P. Mean Shift: A Robust Approach toward Feature Space Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24 (5) : 603 - 619
  • 10Comaniciu D, Ramesh V, Meer P. Kernel-Based Object Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25 ('5) : 564 -577

二级参考文献36

共引文献40

同被引文献56

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部