期刊文献+

基于Contourlet变换的红外图像序列小目标检测技术 被引量:3

A METHOD OF TARGET DETECTION IN INFRARED IMAGE SEQUENCE BASED ON CONTOURLET TRANSFORM
在线阅读 下载PDF
导出
摘要 Contourlet变换具有多尺度,多方向性的特征,是小波的一种扩展。本文提出了一种基于Contourlet变换的红外小目标检测算法。首先对图像进行Contourlet分解;然后利用能量法提取其局部纹理特征,并计算各点的特征向量与中心向量间的距离,得到一个相关的多尺度距离像;最后根据该距离像进行直方图统计,从而实现目标的检测。文中给出了实验结果,并与基于小波变换的红外小目标检测算法进行了比较,结果表明,本方法能较精确地检测出红外小目标,优于基于小波变换的方法。 A new extension of wavelet transform called contourlet is introduced. With rich set of basis images oriented at varying directions in muhiple scales, Contourlet transform can effectively capture the smooth contours. This paper presents a new small target detection approach, which is based on contourlet transform. This method picks up the texture characteristic from the maps after contourlet transform, and calculates the distance between characteristic vector and center characteristic vector. This can gain a correlative muhiscale distance map. The histogram of distance map is employed for the automatic selection of threshold value. The results of the experiment are showed, and compared with the method based on wavelet transform. The results show that this approach can precisely detect the small infrared target and it is better than the method based on wavelet transform.
出处 《信号处理》 CSCD 北大核心 2008年第4期676-679,共4页 Journal of Signal Processing
关键词 目标检测 CONTOURLET变换 纹理分析 target detection contourlet transform texture analysis
  • 相关文献

参考文献6

二级参考文献38

  • 1Xia X G, Geronimo J S, Hardin D Petal Dedign of prefilters for discerte multiwavelet transforms[J]. IEEE Trans on Signal Processing. 1996.44(1) :25-35.
  • 2S Carlsson.Sketch Based Coding of Grey Level Images[J].IEEE Trans.Signal Processing,1988,15(1):57-83.
  • 3J Elder.Are Edges Incomplete?[J].International Journal of Computer Vision,1999,34(2):97-122.
  • 4X Xue,X Wu.Image Representation Based on Multi-scale Edge Compensation[C].Kobe:The International Conference on Image Processing,1999.
  • 5S Mallat,S Zhong.Wavelet Transform Maxima and Multiscale Edges[A].B R,et al.Wavelets and Their Applications[M].Boston:Jones and Bartlett,1992.
  • 6A Cohen,B Matei.Nonlinear Subdivisions Schemes:Applications to Image Processing[A].A Iske,E Quack,M Floater.Tutorial on Multiresolution in Geometric Modeling[M].Springer,2002.93-97.
  • 7P L Dragotti,M Vetterli.Footprints and Edgeprints for Image Denoi-sing and Compression[C].Thessaloniki:Proc.of IEEE International Conference on Image Processing (ICIP),2001.237-240.
  • 8E Le Pennec,S Mallat.Image Compression with Geometrical Wavelets[C].Vancouver:Proc.of International Conference on Image Processing (ICIP),2000.661-664.
  • 9E J Candes,D Donoho.Curvelets:A Surprisingly Effective Nonadaptive Representation for Objects with Edges[A].A Cohen,C Rabut,L L Schumaker.Curve and Surface Fitting[M].Nashville:Vanderbilt University Press,1999.
  • 10M N Do,M Vetterli.Contourlets[A].J Stoeckler,G V Welland.Beyond Wavelets[M].Academic Press,2002.

共引文献96

同被引文献18

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部