期刊文献+

基于最小二乘法的改进的随机椭圆检测算法 被引量:39

An improved randomized algorithm for detecting ellipses based on least square approach
在线阅读 下载PDF
导出
摘要 为了提高数字图像中椭圆检测的效率和准确性,提出了一个基于最小二乘法的改进的随机椭圆检测算法.该算法随机选取图像中的3个边缘点,在以这3个点为中心的窗口内,从边缘点中拟合出可能椭圆,并通过随机选取的第4个边缘点来确认可能椭圆.利用直接最小二乘法椭圆拟合的特性,引入可能椭圆边缘点收集和椭圆重新拟合的迭代过程来提取最终的椭圆参数.通过对含有不同噪声的仿真图片和包括残缺椭圆的实际图片的实验表明,新算法的改进是有效的.与原算法相比,新算法降低了对参数的依赖性,提高了检测的速度、稳定性和准确性,同时保留了原算法的抗噪声能力. An improved randomized ellipse detection algorithm based on least square approach was proposed to enhance the efficiency and accuracy of ellipse detection in digital images. This algorithm randomly selects three edge points in the image, and then uses least square approach to fit all the edge points in three windows, which are defined by the three edge points. The forth edge point is randomly selected to judge whether a possible ellipse exists in the image. Utilizing the characteristic of direct least square fitting of ellipse, an iteration process of edge point collecting and ellipse refitting of possible ellipse was introduced to extract the final ellipse's parameters. Artificial images with different levels of noise and nature images containing incomplete ellipses were employed to test this algorithm. Experimental results show that the improvements are notable. Compared with the original algorithm, the proposed algorithm reduces the dependence on arguments of detection algorithm, and enhances the speed, stability and accuracy of ellipse detection, while preserves the anti-noise ability of the original algorithm.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第8期1360-1364,共5页 Journal of Zhejiang University:Engineering Science
基金 宁波市科技计划资助项目(2006B100027)
关键词 椭圆检测 随机检测 最小二乘法 ellipse detection randomized detection least square approach
  • 相关文献

参考文献8

  • 1CHENG Zi-guo, LIU Yun-cai. Efficient technique for ellipse detection using restricted randomized Hough transform [C] // Proceedings of the International Conference on Information Technology: Coding and Computing. Las Vegas: IEEE, 2004, 2: 714-718.
  • 2QIAO Yu, ONG S H. Arc-based evaluation and detection of ellipse [J]. Pattern Recognition, 2007, 40 (7) : 1990 - 2003.
  • 3LI Liang-fu, FENG Zu-ren, HE Kai liang. A randomized algorithm for detecting multiple ellipses based on least square approach [J]. Opto-electronics Review, 2005, 13(1): 61-67.
  • 4李良福,冯祖仁,贺凯良.一种基于随机Hough变换的椭圆检测算法研究[J].模式识别与人工智能,2005,18(4):459-464. 被引量:15
  • 5HALIR R, FLUSSER J. Numerically stable direct least squares fitting of ellipses [C]// Proceedings of the 6th International Conference in Central Europe on Computer Graphics and Visualization. Plzen: University of West Bohemia, 1998: 125-132.
  • 6黎自强,滕弘飞.广义Hough变换:多个圆的快速随机检测[J].计算机辅助设计与图形学学报,2006,18(1):27-33. 被引量:40
  • 7MCLAUGHLIM R A. Randomized Hough transform: improved ellipse detection with comparison [J]. Pattern Recognition Letters, 1998, 19(3): 299-305.
  • 8ZHANG Si-cheng, LIU Zhi-qiang. A robust, real-time ellipse detector [J]. Pattern Recognition, 2005, 38 (2) : 273 - 287.

二级参考文献21

  • 1Yamaguchi N, Mizoguchi H. Robot Vision to Recognize Both Face and Object for Human-Robot Ball Playing. In: Proc of theIEEE/ASME International Conference on Advanced Intelligent Mechatronics. Kobe, Japan, 2003, II : 999-1004.
  • 2Adorni G, Cagnoni S, Mordonini M. I.andmark-Based Robot Self-Localization; A Case Study for the RoboCup Goal-Keeper.In: Proc of the International Conference on Information Intelligence and Systems. Washington, USA, 1999, 164-171.
  • 3Hough P V C. Method and Means for Recognizing Complex Patterns. USA, Patent. D10, 3069654. 1962.
  • 4Chen T C, Chung K L. An Efficient Randomized Algorithm for Detecting Circles. Computer Vision and Image Understanding,2001, 83(2):172-191.
  • 5Cheng Z G, Liu Y C. Efficient Technique for Ellipse Detection Using Restricted Randomized Hough Transform. In: Proc of the International Conference on Information Technology: Coding and Computing. Las Vegas, USA, 2004, II : 714--718.
  • 6McLaughlin R A. Randomized Hough Transform: Better Ellipse Detection. In: Proc of the IEEE TENCON Digital Signal Processing Applications. Perth, Australia, 1996, I : 409-414.
  • 7McLaughlin R A. Randomized Hough Transform: Improved Ellipse Detection with Comparison. Pattern Recognition Letters,1998, 19(3):299-305.
  • 8Sheu H T. Chen H Y, Hu W C. Consistent Symmetric Axis Method for Robust Detection of Ellipses. IEE Proceedings on Vision, Image and Signal Processing, 1997, 144(6): 332-338.
  • 9Halir R, Flusser J. Numerically Stable Direct I.east Squares Fitting of Ellipses. In: Proc of the 6th International Conference inCentral Europe on Computer Graphics and Visualization. Plzeo,Czech Republic, 1998, 125-132.
  • 10Fitzgibbon A, Pilu M, Fisher R B. Direct Least Square Fitting of Ellipses. IEEE Trans on Pattern Analysis and Machine Intelligence, 1999, 21(5): 476-480.

共引文献52

同被引文献321

引证文献39

二级引证文献211

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部