期刊文献+

一类非线性色散耗散波动方程的整体解

Global solutions for a class of nonlinear wave equations with dispersive-dissipative terms
在线阅读 下载PDF
导出
摘要 研究一类具有色散项与耗散项的四阶非线性波动方程在n维空间中有界域上的Dirichlet初边值问题.其中,半线性项f(u)与u的符号相同,并满足一定的增长条件.定义了位势井W及一族位势井,证明了若满足一定的条件,则此问题存在一个整体弱解,且此解在这族位势井中,最后证明了整体强解的存在唯一性. The Dirichlet initial boundary value problem is studied for a class of nonlinear wave equations of fourth order with dispersive and dissipative terms on a bounded domain in n-dimensional space, where the sign of semi-linear term f(u) is the same as u and satisfies certain growth conditions. First, the potential well W and a family of potential wells are defined. Then it is proven that if certain conditions are satisfied, the problem has a global weak solution which belongs to the family of potential wells. Finally, the existence and uniqueness of global strong solution to this problem were proven.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2008年第8期886-890,共5页 Journal of Harbin Engineering University
基金 黑龙江省自然科学基金资助项目(A2007-02)
关键词 非线性波动方程 色散 耗散 位势井 整体解 存在性 位势井族 nonlinear wave equations dispersivity dissipation potential well global solution existence family of potential wells
  • 相关文献

参考文献9

  • 1庄蔚 杨桂通.孤波在非线性弹性杆中的传播[J].应用数学与力学,1986,7(7):571-582.
  • 2张善元 庄蔚.非线性弹性杆中的应变孤波[J].力学学报,1988,20(1):58-66.
  • 3SEYLER C E, FANSTERMACHER D L. A symmetric regularized long wave equation[J]. Phys Fluids, 1984,27 (1) :4-7.
  • 4YANG Zhijian. Existence and non-existence of global solutions to a generalized modification of the improved Boussinesq equations[J]. Math Meth in the Appl Sci, 1998,21 : 1467-1477.
  • 5杨志坚,宋长明.关于一类非线性发展方程整体解的存在性问题[J].应用数学学报,1997,20(3):321-331. 被引量:22
  • 6朱位秋.弹性杆中的非线性波[J].固体力学学报,1980,1(2):247-253.
  • 7尚亚东.一类四阶非线性波动方程的初边值问题[J].应用数学,2000,13(1):7-11. 被引量:11
  • 8刘亚成,徐润章.一类非线性色散耗散波动方程整体解的存在性[J].哈尔滨工程大学学报,2007,28(5):586-589. 被引量:8
  • 9LIU Yacheng, ZHAO Junsheng. On potential wells applications to sernilinear hyperbolic equation and parabolic equations[J]. Nonlinear Analysis, 2006 (64) : 2665- 2687.

二级参考文献27

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部