期刊文献+

一种挖掘关联规则的改进算法

An improved algorithm for minging association rules
在线阅读 下载PDF
导出
摘要 为了解决关联规则挖掘过程中会生成大量关联规则的问题,提出了一种基于集合枚举树的挖掘关联规则的改进算法.此算法在不丢失任何信息的情况下只生成关联规则的某些前件集,大大减少了关联规则的生成数量,提高了用户分析关联规则结果的效率. To solve the problem that a lot of association rules may be generated in the process of association rules mining, an improved algorithm based on the set-enumeration tree for mining the association rules is presented, and the algorithm reduces the number of association rules remarkably and generates some subset of the association rules while any information may not be lost. The efficiency of the analysis for the association rules will be enhanced.
出处 《郑州轻工业学院学报(自然科学版)》 CAS 2008年第3期117-120,共4页 Journal of Zhengzhou University of Light Industry:Natural Science
基金 国家自然科学基金项目(60474022) 河南省高校杰出科研人才创新工程项目(2007KYCX018)
关键词 频繁项集 关联规则 集合枚举树 frequent itemset association rule set-eumeration
  • 相关文献

参考文献6

  • 1Agrawal R, Mannila H , Srikant R , et al. Fast discovery rules[ C]//Fayyad U Advances in Knowledge Discovery and Data Mining. Menlo Park: AAAI Press, 1996:307 - 328.
  • 2Cercone V, Tsuchiya M. Luesy editor' s introduction [ J ]. IEEE Transaction on Knowledge and Data Engineering, 1993,5(6) :901.
  • 3Brin S, Motwani R, Ullman J, et al. Dynamic itemset counting and implication rules for market basket data [ EB/OL] . ( 1999 - 05 - 23 ) [ 2007 - 05 - 09 ]. http :// citeseer. njnec.com/brin97dynamic html.
  • 4武坤,李乃雄,魏庆,姜保庆.基于集合枚举树的关联规则生成算法[J].计算机工程与应用,2006,42(26):152-155. 被引量:4
  • 5姜保庆,李建,徐扬.布尔关联规则集的结构[J].河南大学学报(自然科学版),2006,36(1):88-90. 被引量:2
  • 6Pasquier N, Bastide Y, Taouil R , et al. Discovering frequent closed itmesets for association rides [ EB/OL]. ( 1999 - 11 - 23 ) [ 2007 - 04 - 18 ]. http: // citeseer. njnec. com / pasquier99 discovering html.

二级参考文献21

  • 1高俊,施伯乐.快速关联规则挖掘算法研究[J].计算机科学,2005,32(3):200-201. 被引量:10
  • 2Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C]// Proc.of the 1993 ACM SIGMOD Int.Conf.on Management of Data.Washington,D.C.,1993:207-216.
  • 3Chen Guoqing,Wei Qiang,Liu De,et al.Geert Wets.Simple association rules (SAR) and the SAR-based rule discovery[J].Computers & Industrial Engineering,2002(43):721-733.
  • 4Agrawal R,Srikant R.Fast algorithms for mining association rules in large databases[C]// Proc.of the 20th Int.Conf.on Very Large Data Bases (VLDB'94),Santiago,Chile,September,1994:487-499.
  • 5Burris S,Sankappanavar H P.A Course in Universal Algebra[M].Springer-Verlag,New York,1981.
  • 6Donald F.Stanat,David F.McAllister.Discrete Mathematics in Computer Science[M].Prentice-Hall,Inc.,Englewood Cliffs,N.J.1977.
  • 7Birkhoff G.Lattice Theory[M].American Mathematical Society,1967.
  • 8Han J,Kamber M.Data mining:Concepts and Techiques[M].Morgan Kaufmann Publishers,2001.
  • 9Jiawei Han,Micheline Kamber.Data Mining Concepts and Techniques[M].First edition,Beijing:Higher Education Press,2001:152~157
  • 10R Agrawal,R Srikant.Fast algorithms for mining association rules in large databases[C].In:Proc of the 20th Int Conf on Very Large Data Bases (VLDB'94),Santiago,Chile,1994:487~499

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部