期刊文献+

201、325和706铀矿床蚀变带绿泥石研究 被引量:9

Chlorite in alteration zone of uranium deposits No.201, No.325 and No.706
在线阅读 下载PDF
导出
摘要 以岩矿鉴定结果和电子探针绿泥石分析数据为依据,将325、706花岗岩型铀矿床蚀变带绿泥石分为假象绿泥石和鳞片状绿泥石。后者由前者转变而成,转变过程中存在着铁的迁出与镁的加入,迁出的铁形成赤铁矿,可能是造成碱性蚀变带呈红色的原因之一。201、325铀矿床蚀变带绿泥石为铁镁绿泥石和蠕绿泥石,706铀矿床蚀变带绿泥石主要属密绿泥石和铁斜绿泥石,少数属铁镁绿泥石。研究发现绿泥石变种由蚀变带原岩的∑FeO与MgO比值大小决定,与铀矿蚀变带是否为酸性和碱性没有必然的对应关系;绿泥石晶胞中镁羟基和铝羟基相对比例大小不同,是导致其吸收位置在2259~2262nm和2348~2359nm的诊断性吸收峰发育程度存在差别的原因。 According to mineralogical examination and electron microprobe data analysis, post-biotite chlorite and spheluritic chlorite are two forms of chlorites in the alteration zone of granite-type uranium deposits No.325 and No.706. As post-biotite chlorite is substituted for spheluritic chlorite, during the substitution, some Fe are released and Mg replace in, which results in the further hematization in rock. This is probably one of the reasons that red color occurs in sodium metasomatic alteration zone. The chlorites in uranium deposits No.201 and No.325 are brunsvigite and ripidolite. Most of the chlorites in uranium deposit No.706 are pycnochlorite and diabantite, while a few are brunsvigites. A new finding shows that the chlorite variety is determined mainly by ∑ FeO and MgO ratio of primary rock and is independent of alteration characteristic (acidic alteration or alkalic alteration). The proportion of Mg hydroxyl and Al hydroxyl in the unit-cell of chlorite may cause spectrum difference of diagnostic absorptive valley position and depth at 2 259-2 262 nm and 2 348-2 359 nm.
出处 《世界核地质科学》 CAS 2008年第3期125-133,共9页 World Nuclear Geoscience
关键词 花岗岩型铀矿床蚀变带 绿泥石分类 红化 诊断性光谱特征 granite-type uranium deposit alteration zone chlorite classification red alteration diagnostic spectral property
  • 相关文献

参考文献6

  • 1李月湘.201富铀矿床蚀变地球化学研究[J].铀矿地质,1990,6(6):359-368. 被引量:10
  • 2张展适,华仁民,季峻峰,张彦春,郭国林,尹征平.201和361铀矿床中绿泥石的特征及其形成环境研究[J].矿物学报,2007,27(2):161-172. 被引量:39
  • 3[3]Deer W A,Howie R A,Iussman J.Rock-forming minerals:Sheet silicates[M].London:Longman,1962.131-145.
  • 4[4]刘尚华,孙志富.322矿田碱交代的基本概况及与北方对比[R].北京:核工业北京地质研究院,1977.
  • 5[5]李田港,童航寿,李月湘,等.201和361富铀矿床地质特征和形成条件[R].北京:核工业北京地质研究院,1989.
  • 6[6]孙圭,赵致和,程明高,等.西北铀矿地质:矿床卷[M].西安:核工业西北地质局,1998.

二级参考文献24

  • 1刘埃平,金景福.361铀矿床的构造控矿特征[J].成都地质学院学报,1993,20(2):106-112. 被引量:6
  • 2张展适,华仁民,邓平,朱捌,吴烈勤,张彦春,谭正中,尹征平.诸广-下庄铀矿集区成矿过程中水-岩作用的地质地球化学特征[J].地球化学,2005,34(5):483-494. 被引量:27
  • 3Deer W A,Howie R A,Iussman J.Rock-Formig Minerals:Sheet Silicates[M].London:Longman,1962:270.
  • 4Xie X G.Ⅱ b trioctahedral chlorite from the Barberton greenstone belt:crystal structure and rock composition constraints with implications to geothermonetry[J].Contrib Mineral Petrol,1997,126:275-291.
  • 5MacDowell S D,Elders W A.Authigenic layer silicate minerals in borehole Elmore Ⅰ.Salton Sea geothermal field,California.USA[J].Contribution to Mineralogy and Petrology,1980,74:293-310.
  • 6Jahren J S,Aagaard p.Compositional variations in diagenetic chlorites and illites,and relationships with formation-water chemistry[J].Clay Mineral,1989,24:157-170.
  • 7Cathelineau M,Nieva D.A chlorite solid solution geothermometer:the Los Azufres (Mexico) geothermal system[J].Contribution to Mineralogy and Petrology,1985,91:235-244.
  • 8Cathelineau M.Catio site occupancy in chlorites and illite as a function of temperature[J].Clay minerals,1988,23:471-485.
  • 9Kranidiotis P,MacLean W H.Systematics of chlorite alteration at the Phelps Dodge massive sufide deposit,Matagami,Quebec[J].Econmic Geology,1987,82:1898-1991.
  • 10Bevins R E,Robinson D,Rowbotham G.Compositional variations in mafic phyllosilicates from regional low-grade metabasites and application of the chlorite geothermometer[J].Journal Metamorphic geology,1991,9:711-721.

共引文献47

同被引文献126

引证文献9

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部