期刊文献+

基于RBF核函数支持向量机分类器的多导脑电信号分类识别研究 被引量:1

Research on the Classification and Recognition of Multi-channel EEG Signal Based on the RBF Kernel Support Vector Machine Classification
在线阅读 下载PDF
导出
摘要 脑电信号是一种典型的非平稳随机信号,对脑电信号的分类识别是非常困难的,为了提高正确识别率,提出多导脑电信号的分类识别方法。首先对受试者分别在睁眼和闭眼状态下的单导脑电信号进行特征提取,然后选取多组识别效果不好的单导联的特征,组合成为多导脑电信号特征,最后用RBF核函数的支持向量机分类器进行分类识别。结果表明对多导联特征的正识率比单导联正识率有很大提高。 Nonstationary randomness signal (NRS) is difficult to classify and recognize. In order to improve the performance of the classifying technique of NRS, a novel technique for classifying multi-channel EEG signal is introduced in this paper. First of all, subjects in the states of one eye open and one eye closed with a single-channel EEG feature are extracted, then the characteristics of single-channel EEG signal with bad classifying results are selected and combined into multi-channel EEG characteristics. Finally, RBF Kernel Support Vector Machine classifier is used to classify the characteristics under different states. The results show that the correct classification rate is greatly improved.
出处 《机电工程技术》 2008年第8期73-75,共3页 Mechanical & Electrical Engineering Technology
基金 国家自然科学基金项目(编号:30470459) 河南省教育厅自然基金(编号:2008A130002)
关键词 脑电信号 多导联 支持向量机 正识率 EEG multi-channel support vector machine ratio of correct recognition
  • 相关文献

参考文献5

  • 1Abdulhamit S., E. Ergun. Classification of EEG signals using neural network and logistic regression [J] . Computer Methods and Programs in Biomedicine, 2005 (78): 87-99.
  • 2Panos M. Pardalos, Vitaliy Yatsenko, J. Chris Sackellares, et al. Analysis of EEG data using optimization, statistics, and dynamical system techniques [J] . Computational Statistics & Data Analysis, 2003 (44): 391-408.
  • 3Vapnik V. An overview of statistical learning theory [A] . IEEE Transactions on Neural Networks [ C], 1999 , 10 (5): 988-999.
  • 4Vapnik, V. The Nature of Statistical Learning Theory [M] . New York: Springer Verlag, 1995.
  • 5谢松云,张海军,赵海涛,张振中,杨金孝.基于SVM的脑功能分类与识别方法研究[J].中国医学影像技术,2007,23(1):125-128. 被引量:8

二级参考文献9

  • 1白树林,谢松云,张玉梅,杨金孝.基于灰色系统理论的脑电特征提取[J].贵州工业大学学报(自然科学版),2005,34(6):55-59. 被引量:6
  • 2边肇祺 张学工.模式识别[M].北京:清华大学出版社,2004..
  • 3Cortes C,Vapnik VN.Support vector networks[J].Machine Learning,1995,20(3):273-297.
  • 4Mitchel TM.机器学习[M].北京:机械工业出版社,2004:9.
  • 5Marx E,Deutschlunder A.Eyes open and eyes closed as rest conditions:impact on brain activation patterns[J].Neuroimage,2004,21 (4):1818-1824.
  • 6Girolami M.Mercer kernel based clustering in feature space[J].IEEE Trans Neural Networks,2002,13(3):780-784.
  • 7Müller KR,Mika S,Ratsch G,et al.An introduction to kernelbased learning algorithms[J].IEEE Transactions Neural Networks,2001,12(2):181-201.
  • 8Casasent D,Wang YC.Automatic target recognition using new support vector machine[C].Proceedings of International Joint Conference on Neural Networks,Montreal,Canada,2005.
  • 9Moosmann M,Ritter P,Krastel I,et al.Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy[J].Neuroimage,2003,20(1):145-158.

共引文献7

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部