期刊文献+

完备凸度量空间中不动点定理与收敛定理

A fixed point existence theorem and a convergence theorem in convex metric spaces
在线阅读 下载PDF
导出
摘要 在凸度量空间中,证明了非空闭凸子集C上的自映射T,在满足某种条件下不动点的存在性;同时研究了Ishikawa迭代序列{xn}在一定条件下收敛到映射T的不动点问题,文中的结果推广了相关作者的许多重要结果. In convex metric spaces, we have proved that if C is a nonempty closed convex, the mapping T in some conditions will have a fixed point and Ishikawa iteration { xn } will converge to the fixed point of T. The main result presented generalizes and unites many related results in literature.
作者 刘才贵
出处 《南阳师范学院学报》 CAS 2008年第9期10-12,共3页 Journal of Nanyang Normal University
关键词 凸度量空间 ISHIKAWA迭代序列 不动点 convex metric space Ishikawa iteration fixed points
  • 相关文献

参考文献9

  • 1Takahashi W. A convexity in metric spaces and nonexpansive mappings [ J ]. Kodia Math Sere Rep, 1970,22 : 142 - 149.
  • 2Kirk W A. Krasnoselskii' s iteration process in hyperbolic spaces[J]. Numbe Funct Anal Optim, 1982, 4: 371 -381.
  • 3Goebal K, Kirk W A. Iteration processes for nonexpansive mapping [ J ]. Contemporary Math, 1983, 21 : 115 - 123.
  • 4Petryshn W V, Williamson T E. Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mapping[ J]. Math Anal Appl, 1973, 43:459 -497.
  • 5Ghosh M K. Lokenath Dehnath Convergence of Ishikawa iterates of quasi-nonexpansive mappings[ J]. Math Anal Appl, 1997,207:96 - 103.
  • 6Gregus M Jr. A fixed point theorem in Banaeh space [J]. Bollettino. Unione Matematica ltaliana. A. Serie V, 1980,17(1) :193 - 198.
  • 7Mukherjee R N and Verma V. A note on a fixed point theorem of Gregus[ J]. Mathemation Japonica, 1988,33 (5) :745 -749.
  • 8Olalem J O. A generalization of Gregus fixed point theorem[ J]. Journal of Applied Sciences, 2006,6 (15) : 3160 -3163.
  • 9Chatterjea S K. Fixed point theorem [ J]. C.R. Acad. Bulgare Sci, 1972,25:727 -730.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部