期刊文献+

基于克隆选择和粒子群思想的动态多群体优化算法 被引量:6

Dynamic multi-swarm optimization based on clonal selection and particle swarm
在线阅读 下载PDF
导出
摘要 针对粒子群算法和克隆选择原理的特点,提出了基于克隆选择和粒子群思想的动态多群体优化算法.该算法将整个群体分为若干子群体,在子群体内部应用基本的粒子群算法,以子群体作为抗体设计了克隆、变异、选择和受体编辑算子.变异算子使子群体动态变化实现子群体间相互交换信息,具有良好的全局搜索能力.实验结果表明,该算法具有寻优能力强、搜索精度高的优点,可用于工程问题中具有各种特性的复杂函数优化. Based on the promising fusion of the clonal selection and particle swarm principles, a dynamic multi-swarm optimization algorithm is proposed. In the approach, the whole swarm is divided into dynamic subpopulations, which are considered as the evolving antibodies. These subpopulations are further optimized by using the particle swarm method to increase the necessary antibody diversity. Moreover, they can exchange useful optimization information among themselves during the iteration procedure. The cloning, hypermutation, selection and receptor editing operators are also employed in the proposed hybrid scheme. Simulations demonstrate that the optimization algorithm can overcome the premature and slow convergence drawbacks of the standard particle swarm and clonal selection methods, and it is very effective in dealing with the challenging nonlinear function optimization problems.
出处 《控制与决策》 EI CSCD 北大核心 2008年第9期1073-1076,共4页 Control and Decision
基金 国防预研项目(9140A17030207HT0150) 芬兰科学院研究项目(Grant214144)
关键词 克隆选择 粒子群 优化算法 多维函数优化 多群体 Clonal selection Particle swarm Optimization algorithm Multi-dimension function optimization Multiswarm
  • 相关文献

参考文献9

  • 1De Castro L N. Learning and optimization using the clonal selection principle [ J ]. IEEE Trans on Evolutionary Computation, 2002, 6(3): 239-251.
  • 2Kennedy J, Eberhart R. Particle swarm optimization [C]. Proc of the IEEE Int Conf on Neural Networks. Perth, 1995: 1942-1948.
  • 3Shi Y, Eberhart R C. A modified particle swarm optimizer [ C ]. Proc of the IEEE Congress on Evolutionary Computation. Piseataway, 1998: 69-73.
  • 4谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:423
  • 5Mendes R, Kennedy J, Neves J. The fully informed particle swarm: Simper, maybe better[J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 204-210.
  • 6Liang J J, Suganthan P N. Dynamic multi-swarm particle swarm optimizer[C]. Proe of the 2005 IEEE Swarm Intelligence Symposium. Pasadena, 2005: 127-132.
  • 7贾东立,张家树.基于混沌变异的小生境粒子群算法[J].控制与决策,2007,22(1):117-120. 被引量:50
  • 8Hu X, Eberhart R C. Muhiobjective optimization using dynamic neighborhood particle swarm optimization[C]. Proc of IEEE Congress on Evolutionary Computation. Hawaii, 2002.. 1677-1681.
  • 9Wang X, Gao X Z, Ovaska S J o Artificial immune optimization methods and applications: A survey[C]. Proc of the IEEE Int Conf on Systems, Man and Cybernetics. The Hague, 2004: 3415-3420.

二级参考文献44

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2贾东立,张家树,张超.基于混沌遗传算法的基元提取[J].西南交通大学学报,2005,40(4):496-500. 被引量:9
  • 3陈辉,张家树,张超.实数编码混沌量子遗传算法[J].控制与决策,2005,20(11):1300-1303. 被引量:41
  • 4[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 5[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 6[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 7[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 8[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 9[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 10[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.

共引文献470

同被引文献66

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部