期刊文献+

偏亚高斯语音信号有效分离ICA方法研究 被引量:3

Method Research on Effictive Seperated ICA Algorithm to Sub-Gaussian Distribution Audio Signal
在线阅读 下载PDF
导出
摘要 针对扩展Infomax语音分离算法仅只对无偏信号的概率密度分布进行建模的不足,提出了一种有效分离的有偏亚高斯信号ICA算法。通过修改扩展Informix算法所基于的Pearson混合模型,使修改后的模型既能较好地逼近对称的概率密度分布,又能逼近非对称的概率密度分布,从而在源信号是非对称分布的情况下,能获得更好的分离质量和较快的收敛速度。 An effictive seperated independent component analysis (ICA) algorithm is obtained by introducing a skewness-adjusting parameter to the Pearson mixture density model in extended Infomax algorithm. This model with skewness-adjusting parameter can cover a wider range of sub-Gaussian distribution including asymmetrical and multi-modal ones, resulting in more precisely approximating source's density. When dealing with non-skewed mixed sources, the new algorithm can achieve less steady-state error while maintaining fast convergence speed.
作者 洪英 韩周安
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2008年第5期693-697,共5页 Journal of University of Electronic Science and Technology of China
关键词 语音分离 ICA算法 独立分量分析 Infomax算法 audio separation ICA algorithm independent component analysis infomax algorithm
  • 相关文献

参考文献11

  • 1TANG C W, VANSLYKE S A, CHEN C H. Electroluminescence of doped organic thin films[J]. J Appl Phys, 1987, 51: 913-915.
  • 2HYVARINEN A, KARHUNEN J, OJA E. Independent component analysis[M]. New York: John Wiley & Sons, LTD, 2001.
  • 3官金安,陈亚光.基于独立分量分析的VEP中N2成分提取[J].计算机工程,2006,32(12):29-31. 被引量:2
  • 4LEE T W. Independent component analysis-theory and applications[M]. Norwell, MA: Kluwer, 1998.
  • 5SAWADA Hiroshi, et al. Blind extraction of dominant target sources using ICA and time-frequency masking[J]. IEEE Trans on Audio, Speech and Language Processing, 2006, 14(6): 2165-2173.
  • 6张玲华,杨震,郑宝玉.基于模糊分类器及多层前馈神经网络混合结构的说话人辨认[J].通信学报,2005,26(11):68-75. 被引量:4
  • 7BELL A J, SEJNOWSKI T J. An information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995, 7(6): 1004-1034.
  • 8LEE T W, GIROLAMI M, SEJNOWSKI T J. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources[J]. Neural Computation, 1999, 11(3): 417-441.
  • 9OZEROV A, et al, Adaptation of Bayesian models for single channel source separation and its application to voice/music separation in popular songs[J]. IEEE Trans on Audio, Speech and Language Processing, 2007, 15(5): 1564-1578.
  • 10郑鹏,何同林,刘郁林,彭启琮,尤春艳.基于实数编码遗传算法的盲信源分离方法[J].电子科技大学学报,2006,35(3):295-297. 被引量:5

二级参考文献32

  • 1何致远.说话人确认和辨认的研究与实现[D].北京:清华大学,2002.
  • 2何致远 胡起秀 姚志宏.基于HMM的数字串提示文本的说话人确认[A]..第九届全国多媒体技术学术会议论文集[C].北京,2000.215—219.
  • 3SI Luo, HU Qixiu. Two-stage speaker identification system based on VQ and NBDGMM [A]. Proc of the Sixth Inter Conf on Spoken Language Processing [C]. Beijing, 2000.
  • 4Fakotakis N, Sirigos J. A high performance text independent speaker recognition system based on vowel spotting and neural nets [A]. Proc Inter Conf on Acoustics, Speech and Signal Processing[C]. Atlanta, USA. 1996. 661-664.
  • 5Furui S. Recent advances in speaker recognition [J]. Lecture Notes in Computer Science, 1997, 1206:237-252.
  • 6Li Qi, Juang Biinghwang, Lee Chinhui, et al. Recent advancements in automatic speaker authentication [J]. IEEE Robotics and Automation Magazine, 1999, 3:24 - 34.
  • 7Furui S. Cepstral analysis technique for automatic speaker verification [J]. IEEE Trans on Acoustics, Speech and Signal Processing, 1981, 29(2) : 254 - 272.
  • 8JIN Qin, SI Luo, HU Qixiu. A high-performance text-independent speaker identification system based on BCDM [A]. Proc of the Fifth Inter Conf on Spoken Language Processing[C]. Sydney, Australia. 1998.
  • 9牟晓隆,胡起秀,吴文虎.与文本无关的复合策略说话人辨识系统[J].清华大学学报(自然科学版),1997,37(3):16-19. 被引量:6
  • 10CAMPBELL J P. Speaker recognition: a tutorial[J]. Proceedings of the IEEE, 1997,85(9): 1437-1462.

共引文献18

同被引文献27

  • 1王晓伟,林锁.基于独立分量分析的混合声音信号分离[J].兵工自动化,2007,26(6):48-50. 被引量:3
  • 2Jutten C, Herault J. Blind separation of sources Part Ⅰ : An adaptive algorithm based on neuromimatic architecture [ J]. Signal Processing,1991,24(1 ) : 1 - 10.
  • 3Comon P. Independent component analyses, a new concept [ J ]. Signal Processing, 1994, 36 ( 3 ) : 287 -314.
  • 4Francis R B, Michael I J. Kernel independent component analysis [ J ]. Journal of Machine Learning Research ,2002,2(3 ) : 1248 - 1248.
  • 5Delfosse N, Loubaton P. Adaptive Blind Separation of Independent Source : A Deflation Approach [ J]. Signal Processing, 1995, 45 ( 1 ) : 59 - 83.
  • 6Stewart M, Bartlett, Sejnowski T. Viewpoint Invariant Face Recognition Using Independent Component Analysis and Attractor Networks [ C ]// Neural Information Processing Systems - Natural and Synthetic. Cambridge: MIT Press, 1997:817 - 823.
  • 7JUTTEN C, HERAULT J. Blind separation of sources Part I:An adaptive algorithm based on neuromimatic architecture[ J ]. Signal Processing, 1991,24(1) : 1 -10.
  • 8OOMON P. Independent component analyses, a new concept[ J]. Signal Processing, 1994, 36(3) : 287 -314.
  • 9BELL A J, SEJMOWSKI T J. An information-maximization approach to blind separation and blind deconvolution [ J ]. Neural Computation, 1995 7(6): 1159 -1171.
  • 10HYVARINEN A, LJA E. A fast fixed-point algorithm for independent component analysis [ J]. Neural Computation, 1997, 9 (7) : 1483 - 1492.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部