期刊文献+

基于改进的两阶段控制策略的AGV路径优化调度研究 被引量:11

Dynamic Path Planning and Scheduling for Multiple AGV System Based on Improved Two-stage Traffic Control Scheme
在线阅读 下载PDF
导出
摘要 提出了一种基于改进后的两阶段控制策略和多目标的带约束遗传算法的控制策略,并用通过速度调节的冲突解决模式,实施对AGV系统的优化调度。首先利用遗传算法离线生成k条最优路径,再采用速度调节的冲突解决模式对其进行在线动态路径规划;若k条路径均不能满足条件,则用带约束多目标遗传算法计算最优路径。仿真证明:本文提出的调度策略,大大增加了AGV调度系统的柔性、效率和鲁棒性,提高了系统效率,为实际应用提供了技术依据。 A systematic control strategy is presented for scheduling the multiple AGV system. Such a strategy is based on an improved two-stage traffic control scheme, muti-objective genetic algorithm with constraints and conflict avoidance policy by regulating speed. First, k candidate paths are prepared by genetic algorithm off-line, and stored in the form of routing table. Then the on-line traffic controller utilizes the table to generate a collision-free path by the conflict avoidance policy ; if the k candidate paths are not suitable, then a suitable path is to be generated by genetic algorithm with constraints. It is proved with simulation that the strategy improves flexibility, robustness and efficiency of the AGV system.
出处 《机械科学与技术》 CSCD 北大核心 2008年第9期1211-1216,共6页 Mechanical Science and Technology for Aerospace Engineering
基金 江苏省精密与微细制造技术重点实验室基金项目(JSPM200701) 江苏省物流自动化装备工程技术研究中心基金项目(BM2006806)资助
关键词 AGV 调度系统 两阶段控制策略 带约束的遗传算法 动态路径规划 automated guided vehicle(AGV) two-stage control scheme genetic algorithm with constraints dynamic path planning
  • 相关文献

参考文献8

  • 1Svestka P, Overmars M. Coordinated motion planning for multiple ear-like robots using probabilistie road-map[ A]. In: Proc IEEE International Conference on Robotics and Automation [ C ], Nagoya, Japan, 1995:1631 - 1636
  • 2Lee J H, Lee B H. Real time traffic control scheme of multiple AGV systems for collision free minimum time motion : a routing table approach [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Hnmans,1998,28 (3) :347 - 358
  • 3Roszkowska E. Undirected colored Petri net for modeling and supervisory control of AGV systems[ A]. In: IEEE Comput. Soc. Proceedings Sixth International Workshop on Discrete Event Systems[C], Zaragoza, Spain: IEEE Comput. Soc, 2-4 Oct. 2002 : 135 - 142
  • 4Reddy B S P, Rao C S P. A hybrid multi-objective GA for simultaneous scheduling of machines and AGVs in FMS[ J]. International Journal of Advanced Manufacturing Technology, 2006,31 (5 -6) :602 -613
  • 5Li Q, et al. An improved genetic algorithm of optimum path planning for mobile robots[ A]. In: IEEE Computer Society, 2006 6th International Conference on Intelligent Systems Design and Applications [ C ], Jinan, China: IEEE Computer Society, 2006
  • 6孙树栋,林茂.基于遗传算法的多移动机器人协调路径规划[J].自动化学报,2000,26(5):672-676. 被引量:49
  • 7李晓萌,杨煜普,许晓鸣.基于递阶强化学习的多智能体AGV调度系统[J].控制与决策,2002,17(3):292-296. 被引量:9
  • 8刘国栋,曲道奎,张雷.多AGV调度系统中的两阶段动态路径规划[J].机器人,2005,27(3):210-214. 被引量:43

二级参考文献19

  • 1吴晓涛,孙增圻.用遗传算法进行路径规划[J].清华大学学报(自然科学版),1995,35(5):14-19. 被引量:76
  • 2T G Dietterich. Machine learning research: Four current directions[J]. Artificial Intelligence Magazine,1997,18(4):97-136.
  • 3C Claus, C Boutilier. The dynamics of reinforcement learning in cooperative multiagent systems[A]. Proc of the 10th AAAI[C]. Wisconsin: Madison,1998.746-752.
  • 4L Kaelbling. Hierarchical reinforcement learning: Preliminary results[A]. Proc of the 10th ICML[C]. San Francisco: Morgan Kaufmann,1993.167-173.
  • 5T Dietterich. The MAXQ method for hierarchical reinforcement learning[A]. Proc of the 15th ICML[C]. San Francisco: Morgan Kaufmann.1998.118-126.
  • 6C J Watkins. Learning from delayed rewards[D]. Cambridge: Kings College,1989.
  • 7J Bartholdi, L Platzman. Decentralized control of affixed route automatic guided vehicle system[J]. IIE Transactions,1989,21(1):76-81.
  • 8J Lee. Composite dispatching rules for multiple-vechile AGV system[J]. Simulation,1996,66(2):121-130.
  • 9C Klein, J Kim. AGV dispatching[J]. Int J of Production Research,1996,34(1):95-100.
  • 10Wu N Q, Zhou M C. AGV routing for conflict resolution in AGV systems [ A ]. Proceedings of the 2003 IEEE International Conference on Robotics and Automation [ C ]. Taipei Taiwan: IEEE, 2003.1428 - 1433.

共引文献97

同被引文献70

  • 1刘国栋,曲道奎,张雷.多AGV调度系统中的两阶段动态路径规划[J].机器人,2005,27(3):210-214. 被引量:43
  • 2REVELIOTIS S A. Real-time management of resource allocation sys- tems: a discrete event systems approach [ M]. Berlin: Springer, 2005.
  • 3SINGH N, SARNGADHARAN P V, PRABIR K P. AGV schedu- ling for automated material distribution: a ease study [ J]. Journal of Intelligent Manufacturing, 2011, 22(2) : 219 - 228.
  • 4SABINE P, SEBASTIAN E. Hybrid evolutionary optimization of the operation of pipeless plants [ J]. Journal of Heuristics, 2010, 16 (3): 311-336.
  • 5SRIVASTAVA S C, CHOUDHARY A K, KUMAR S, et al. Devel- opment of an intelligent Agent-based AGV controller for a flexible manufacturing system [ J]. The International Journal of Advanced Manufacturing Technology, 2008, 36(7/8): 780-797.
  • 6EROL R, SAHIN C, BAYKASOGLU A, et al. A multi-Agent based approach to dynamic scheduling of machines and automated guided vehicles in manufacturing systems [ J]. Applied Soft Compu- ting, 2012, 12(6): 1720 - 1732.
  • 7BABU A G, JERALD J, HAQ A N, et al. Scheduling of machines and automated guided vehicles in FMS using differential evolution [ J]. International Journal of Production Research, 2010, 48(16) : 4683 - 4699.
  • 8UM I, CHEON H, LEE H. The simulation design and analysis of a flexible manufacturing system with automated guided vehicle system [ J]. Journal of Manufacturing Systems, 2009, 28(4): 115 -122.
  • 9KENNEDY J, EBERHART R C. Particle swarm optimization [C]// Proceedings of the 1995 IEEE International Conference onNeural Networks. Piscataway, NJ: IEEE Press, 1995: 1942- 1948.
  • 10SALMEN A, AHMAD I, AL-MASANI B. Particle swarm optimiza- tion for task assignment problem [ J]. Microprocessors and Microsys- tems, 2002, 26(8): 363-371.

引证文献11

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部