期刊文献+

具有高逼近阶的插值多尺度函数的构造

Construction of interpolatory multiscaling functions with high approximation order
在线阅读 下载PDF
导出
摘要 研究了对应于插值多尺度函数的两尺度矩阵符号的特殊形式,并将其代入逼近阶方程,推导出逼近阶方程的一种新的表达式。给出了构造具有高逼近阶的3尺度紧支撑插值多尺度函数的具体算法,应用该算法设计了几组例子,计算得到了含有一个或两个参数的滤波器的准确表达式,同时计算出了使多尺度函数具有最高正则性的参数值,并画出了相应的光滑的尺度函数图形。 We show that the two-scale matrix symbol associated with interpolatory multiscaling functions can be reduced to a special form. Furthermore, a new set of approximation order equations for the multiscaling functions is described in terms of the elements of this special two-scale matrix symbol. An algorithm is provided for constructing compactly supported interpolatory multiscaling functions with dilation factor 3 and higher approximation order. Moreover, the associated families of filters with one-parameter or two-parameters are presented explicitly. The optimal parameter values which allow the multiscaling functions to provide the highest regularity are also computed and the corresponding graphs of the smooth scaling functions are drew.
出处 《北京化工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第4期108-112,共5页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
关键词 两尺度矩阵符号 插值 紧支撑 逼近阶 two-scale matrix symbol interpolation compactly supported approximation order
  • 相关文献

参考文献10

  • 1Geronimo J S, Hardin D P, Massopust P R. Fractal functions and wavelet expansions based on several scaling function[J]. Journal of Approximation Theory, 1994, 78(3) : 373 - 401.
  • 2Chui C K, Lian Jian-ao. A study on orthonormal multiwavelets[J]. Applied Numerical Mathematics, 1996, 20 (3) : 273 - 298.
  • 3Mallat S G. Multiresolution approximation and wavelet orthonormal bases of[D]. New York: Courant Institute of Mathematical Sciences New York University, 1989.
  • 4Kock K. Interpolating scaling vectors [ D ]. Marburg: Philipps-Universitat Marburg, 2003.
  • 5Zhang Jiankang, Davidson T N, Luo Z Q, et al. Design of interpolating biorthogonal multiwavelets symtems with compact support [J ]. Applied and Computational Harmonic Analysis, 2001, 11(3) : 420 - 438.
  • 6Lian Jian-ao. Armlets and balanced multiwavelets: flipping filter construction[J]. IEEE Transactions on Signal Processing, 2005, 53(5): 1754-1767.
  • 7Cui Lihong, Cheng Zhengxing. A method of construction for biorthogonal multiwavelets system with 2r multiplicity [J]. Applied Mathematics and Computation, 2005, 167 (2): 901- 918.
  • 8Cui Lihong. Some properties and construction of multi- wavelets related to different symmetric centers[J ]. Mathematics and Computers in Simulation, 2005, 70 ( 2 ) : 69 - 89.
  • 9Plonka G. Approximation order provide by refinable function vectors[J ]. Constructive Approximation, 1997, 13(2): 221 -244.
  • 10Jiang Qingtang. Matlab routines for sobolev and holder smoothness computations of refinahle function[CP/OL]. [ 2006-04-15 ]. http: // www. cs. umsl. edu/- jiang/Jsoft- ware. htm.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部