期刊文献+

两种基于谱方法的流形学习算法研究 被引量:4

Two Manifold Learning Algorithms Based on the Spectral Methods
在线阅读 下载PDF
导出
摘要 流形学习方法是一种新型的非线性降维方法,它可以有效地对具有内在流形形式的非线性高维数据进行维数约简.目前,流形学习已被成功应用于聚类、可视化等数据挖掘领域,表现出卓越的性能.首先讨论了流形学习的研究现状,然后介绍了这一领域中影响最大的2种算法:局部线性嵌入算法和等距特征映射算法. The manifold learning method is a new kind of nonlinear dimensionality reduction approach, which can effectively reduce dimensions for high dimensional data in an intrinsic nonlinear manifold form. Until currently, this kind of method has been successfully applied to many data mining areas such as clustering and visualization and exhibit powerful capability in these applications. This article concentrates the research on the theory of manifold learning, and discusses two algorithms, Isometric Mapping algorithm and Locally Linear Embedding algorithm, which are two of the most effective manifold learning methods.
作者 周波
出处 《云南民族大学学报(自然科学版)》 CAS 2008年第4期370-373,共4页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 云南省自然科学基金资助项目(2005F0028Q) 国家民族事务委员会科研资助项目(08YN02) 云南省教育厅科研基金资助项目(6Y0006D)
关键词 流形学习 谱方法 等距特征映射 局部线性嵌入 manifold learning spectral method ISOMAP LLE
  • 相关文献

参考文献12

  • 1TENENBAUM J B, SILVA V, LANGFORD J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction[ J]. Science,2000, 290(5500): 2319-2323.
  • 2ROWEIS S T, SAUL L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding [ J ]. Science ,2000, 290 (5500) : 2323 - 2326.
  • 3SEUNG H S, LEE D D. Cognition: The Manifold Ways of Perception[J]. Science,2000, 290(5500) : 2268 -2269.
  • 4CHO E, KIM D, LEE S Y. Posed Face Image Synthesis Using Nonlinear Manifold Learning[ C]//Audio -and Video - Based Biometric Person Authentication. Berlin : Springer, 2003:946 - 954.
  • 5YOON I, NEUMANN U. Image - assisted Visualizations Over Networks[J]. Journal of Electronic hnaging,2003, 12(2) : 355 - 363.
  • 6HEGDE R M, MURTHY H A. Cluster and Intrinsic Dimensionality Analysis of the Modified Group Delay Feature for Speaker Classification[ J ]. Neural Information Processing,2004, 3316 : 1172 - 1178.
  • 7张军平.流形学习若干问题研究[C]//机器学习及其应用.北京:清华大学出版社,2006.
  • 8KEGL B, KRZYZAK A, LINDER T, et al. Learning and Design of Principal Curves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000, 22(3) : 281 -297.
  • 9SMOLA A J, WILLIAMSON R C, MIKA S, et al. Regularized Principal Manifolds[J]. Computational Learning Theory. 1999, 1572:214-229.
  • 10TENENBAUM J B, SILVA V, LANGFORD J C. The Isomap Algorithm and Topological Stability - response[ J ]. Science, 2002, 295 (5552).

共引文献1

同被引文献43

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部