期刊文献+

一种基于改进高斯滤波器的水平集停止项函数 被引量:2

A New Stop Term of Level Set Method Based on Modified Gaussian Filter
在线阅读 下载PDF
导出
摘要 水平集算法为了克服噪声对其演化过程的影响,通常在速度停止项中使用高斯滤波器。但高斯滤波器在滤除噪声的同时也模糊了图像的边缘,而水平集是一种以边缘力为演化动力的算法,因此以模糊图像的边缘力为演化动力通常使传统水平集算法产生错误的分割结果。为此,对水平集函数的速度停止项进行了改进。首先,改进后的速度停止项函数使用一种新的高斯滤波器,该滤波器通过在x和y方向上选用不同的高斯尺度,从而使滤波器在去噪时较好地保留图像边缘等重要信息。接着,对新高斯滤波器长轴和短轴的尺度估计方法进行了研究。最后,再将本文的速度停止项带入到水平集演化方程中,对图像进行演化运算。实验结果表明,采用此方法能够使水平集方法获取更好的分割结果。 The speed stop term was used to realize image segmentation in traditional level set method. A standard Gaussian filter is often used in speed stop term to make the level set insensitive to the noise. However, the Gaussian smoothing filters, while smoothing out the noise, also remove genuine high-frequency edge features and degrade the detection of low-contrast edges. The level set is a method that evolved according to the edge force, and the smoothing filters in speed stop term should be improved. In this paper a new Gaussian smoothing filter was researched. Firstly, the new Gaussian smoothing filter chooses different scale in the x and y directions to protect the edge. Secondly, discuss the determination of short axis' scale and long axis' scale in Gaussian filter. Last using the new Gaussian smoothing filter as the filter of the speed stop term and evolves the level set function. Finally, the experimental results showed that the developed algorithm is verified well than the traditional one.
出处 《宇航学报》 EI CAS CSCD 北大核心 2008年第5期1652-1655,1661,共5页 Journal of Astronautics
基金 航空基础科学基金(20070153005) 航空支撑科技基金(07C53007)
关键词 水平集 改进的高斯滤波器 速度停止项 图像分割 Level set Modified Gaussian filter Stop term Image segmentation
  • 相关文献

参考文献5

  • 1MALLADI R, Sethian J A, Vemuri B C. Shape modeling with front propagation: a level set approach[J]. IEEE Trans. On PAMI, 1995, 17(2) : 158- 175.
  • 2Adalsteinsson D, Sethian J A. Fast level set method for propagating interfaces[J]. Journal of Computational Physics, 1995, 118(2):269- 277.
  • 3Izquierdo E, Ghanbari M. Nonlinear gaussian filtering approach for object segmentation[J]. IEEE Proc. on Vision, Image and Signal Processing, 1999, 146(3): 137-143.
  • 4Paragios N k. Geodesic active regions and level set methods: contributions and applications in artificial vision[J]. Ph. D Thesis, School of computer Sicence, University of Nice Sophia Antipolis, France, 2000.
  • 5Pratt W K. Digital Image Processing [ M ]. New York : John Wiley, 1978.

同被引文献23

  • 1魏颖,徐心和,贾同,赵大哲.基于优化水平集方法的CT图像肺结节检测算法[J].系统仿真学报,2006,18(z2):909-911. 被引量:7
  • 2薛志东,李利军,李衷怡,王乘.利用支持向量机分割虚拟人切片数据[J].计算机应用研究,2006,23(4):45-47. 被引量:8
  • 3陆东莹,庄天戈.基于Level Set方法的低对比度医学图像分割[J].上海交通大学学报,2006,40(8):1444-1447. 被引量:5
  • 4Pommert A, Hohne K H, Pflesser B, et al. Creating a high resolution spatial symbolic model of the inner organs based on the visible human [J]. Medical Image Analysis (S 1361-8415), 2001, 5(3): 221-228.
  • 5Schiemann T, Tiede U, Hohne K H. Segmentation of the visible human for high quality volume-based visualization [J]. Medical Image Analysis (S 1361-8415), 1997, 1 (4): 263-271.
  • 6Dellepiane S, Fontana F, Verrrazza G L. Nonlinear image labeling for multivalued segmentation [J]. IEEE Transaction on Image Processing (S1057-7149), 1996, 5(3): 429-446.
  • 7Udupa J K, Samarasekera S. Fuzzy connectedness and object definition: Theory, algorithms, and applications in image segmentation [J]. Graphical Models and Image Processing (S1077-3169), 1996, 58(3): 246-261.
  • 8Rosenfeld A. The fuzzy geometry of image subsets [J]. Pattern Recognition Letters (S0167-8655), 1991(2): 311-317.
  • 9Jones T N, Metaxas D N. Segmentation Using Deformable Models with Affinity-Based Localization [M]. Philadelphia, USA: University of Pennsylvania Press, 1997.
  • 10Osher S, Sethian J A. Fronts Propagating with Curvature Dependent Speed: Agorithms Based On the Hamilton-Jacobi Formulation [J]. Journal of Computation physics (S0021-9991 ), 1988, 79( 1): 12-49.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部